
N°d’ordre NNT : 2020LYSEI072

THESE de DOCTORAT DE L’UNIVERSITE DE LYON
opérée au sein de
INSA de Lyon

Ecole Doctorale N° 512 InfoMaths

Spécialité : Informatique

Soutenue publiquement le 24/09/2020 par :
Marie Le Guilly

Guided Data Selection
for Predictive Models

Devant le jury composé de :

CORNUEJOLS, Antoine Professeur des Universités, AgroParisTech Rapporteur

LINK, Sebastian Professor, The University of Auckland Rapporteur

BIDOIT-TOLLU, Nicole Professeur des Universités, Université Paris Saclay Examinatrice

HACID, Mohand-Saïd Professeur des Universités, Université Lyon 1 Examinateur

PETIT, Jean-Marc Professeur des universités, INSA Lyon Directeur de thèse

SCUTURICI, Vasile-Marian Maitre Maître de conférences, HDR Directeur de thèse

Département FEDORA – INSA Lyon - Ecoles Doctorales – Quinquennal 2016-2020

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE CHIMIE DE LYON

http://www.edchimie-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
secretariat@edchimie-lyon.fr
INSA : R. GOURDON

M. Stéphane DANIELE
Institut de recherches sur la catalyse et l’environnement de Lyon
IRCELYON-UMR 5256
Équipe CDFA
2 Avenue Albert EINSTEIN
69 626 Villeurbanne CEDEX
directeur@edchimie-lyon.fr

E.E.A. ÉLECTRONIQUE,
ÉLECTROTECHNIQUE,
AUTOMATIQUE

http://edeea.ec-lyon.fr
Sec. : M.C. HAVGOUDOUKIAN
ecole-doctorale.eea@ec-lyon.fr

M. Gérard SCORLETTI
École Centrale de Lyon
36 Avenue Guy DE COLLONGUE
69 134 Écully
Tél : 04.72.18.60.97 Fax 04.78.43.37.17
gerard.scorletti@ec-lyon.fr

E2M2 ÉVOLUTION, ÉCOSYSTÈME,

MICROBIOLOGIE, MODÉLISATION

http://e2m2.universite-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : H. CHARLES
secretariat.e2m2@univ-lyon1.fr

M. Philippe NORMAND
UMR 5557 Lab. d’Ecologie Microbienne
Université Claude Bernard Lyon 1
Bâtiment Mendel
43, boulevard du 11 Novembre 1918
69 622 Villeurbanne CEDEX
philippe.normand@univ-lyon1.fr

EDISS INTERDISCIPLINAIRE

SCIENCES-SANTÉ

http://www.ediss-lyon.fr
Sec. : Sylvie ROBERJOT
Bât. Atrium, UCB Lyon 1
Tél : 04.72.44.83.62
INSA : M. LAGARDE
secretariat.ediss@univ-lyon1.fr

Mme Sylvie RICARD-BLUM
Institut de Chimie et Biochimie Moléculaires et Supramoléculaires
(ICBMS) - UMR 5246 CNRS - Université Lyon 1
Bâtiment Curien - 3ème étage Nord
43 Boulevard du 11 novembre 1918
69622 Villeurbanne Cedex
Tel : +33(0)4 72 44 82 32
sylvie.ricard-blum@univ-lyon1.fr

INFOMATHS INFORMATIQUE ET

MATHÉMATIQUES

http://edinfomaths.universite-lyon.fr
Sec. : Renée EL MELHEM
Bât. Blaise PASCAL, 3e étage
Tél : 04.72.43.80.46
infomaths@univ-lyon1.fr

M. Hamamache KHEDDOUCI
Bât. Nautibus
43, Boulevard du 11 novembre 1918
69 622 Villeurbanne Cedex France
Tel : 04.72.44.83.69
hamamache.kheddouci@univ-lyon1.fr

Matériaux

MATÉRIAUX DE LYON

http://ed34.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIÈRE
INSA de Lyon
MATEIS - Bât. Saint-Exupéry
7 Avenue Jean CAPELLE
69 621 Villeurbanne CEDEX
Tél : 04.72.43.71.70 Fax : 04.72.43.85.28
jean-yves.buffiere@insa-lyon.fr

MEGA MÉCANIQUE, ÉNERGÉTIQUE,

GÉNIE CIVIL, ACOUSTIQUE

http://edmega.universite-lyon.fr
Sec. : Stéphanie CAUVIN
Tél : 04.72.43.71.70
Bât. Direction
mega@insa-lyon.fr

M. Jocelyn BONJOUR
INSA de Lyon
Laboratoire CETHIL
Bâtiment Sadi-Carnot
9, rue de la Physique
69 621 Villeurbanne CEDEX
jocelyn.bonjour@insa-lyon.fr

ScSo ScSo*

http://ed483.univ-lyon2.fr
Sec. : Véronique GUICHARD
INSA : J.Y. TOUSSAINT
Tél : 04.78.69.72.76
veronique.cervantes@univ-lyon2.fr

M. Christian MONTES
Université Lyon 2
86 Rue Pasteur
69 365 Lyon CEDEX 07
christian.montes@univ-lyon2.fr

*ScSo : Histoire, Géographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Abstract

Databases and machine learning (ML) have historically evolved as two separate
domains, even if proposing approaches at their intersection is getting more and
more mainstream. However, they are still dedicated to two complementary yet
different tasks: roughly speaking, while databases are used to store and query the
data, machine learning uses the data to perform analysis, build predictive models,
detect patterns etc. As a result, when confronted to a new problem for which
machine learning techniques can be applied, the data is usually extracted from the
database, and processed outside of it. This extraction process may seem trivial, as
it consists in writing a single query, often in SQL, to select the relevant data. It is
therefore often underestimated, but this data preparation phase is known as the
main bottleneck in machine learning projects, as many issues can arise: ill-defined
database schema, data integration problem, incomplete data, etc. All these issues
can have an important impact on the performances of the final machine learning
models, and we raise and address some of them in this thesis.

First, the database from which the data is extracted usually contains more than the
data of interest: the first question is how to separate the data that the analyst wants
from the one she does not want? Interestingly, this can be seen as a classification
problem, where the task is to build a model that predicts if a tuple is of interest or not.
But in such a configuration, the dataset is likely to be imbalanced: the proportion of
interesting data is often very small with respect to the amount of available tuples in
the database. There exists several solutions to deal with imbalanced data in machine
learning. In this thesis, we develop alternative approaches by taking advantage of
databases’ constraints such as functional dependencies (FDs). We therefore propose
an undersampling approach based on the FD-distance between the minority and
majority classes, using notions related to closure systems.

However, by considering the data extraction only as a classification task, several
problems can appear. First, it requires to have labelled tuples, a task that can only
be performed manually by the analysts that knows what data is of interest for her
considered task. Additionally, it is important to be able to describe the selected data,
to understand what is represents and to make sure it makes sense with the analyst’s
requirements. Considering a relational database, this description should be a SQL
query, so that it can be easily used, refined, and stored for future similar applications.

ii

To this end, we propose a SQL query completion solution, that starts from a very
general query, and helps an analyst to refine her SQL query until she selects her data
of interest, without requiring her to manually label individual tuples. This process
aims at helping the analyst to design the query that will eventually select the data
she requires.

Then, assuming the data has successfully been extracted from the database, the
next natural question is: is the selected data suited to answer the considered ML
problem? This is a broad question, that can be extremely difficult in practice. If
the objective is to build a predictive model, is it possible to say if the selected data
is consistent with the task at end, and will it allow the model to have satisfying
performances? Since getting a predictive model from the features to the class to
predict amounts to providing a function, we point out that it makes sense to assess
the existence of that function in the data. This existence can be studied through the
prism of functional dependencies. The objective is to decide if the learning process
can start, or if more time should be spent on the data selection process. We show
how the dataset can be explored to understand the limitations of the model when
the performances are not satisfying. Additionally, we question how to refine the
data selection in the situations for which the initially selected data does not seem
adequate with the considered predictive task, by analyzing counterexamples, i.e
pairs of tuples preventing the existence of a function. To this end, we consider the
context for which the data is selected, and identify additional selection predicates to
select the data that is the most coherent with this context.

iii

Résumé

Historiquement, les bases de données et l’apprentissage automatique sont deux do-
maines qui ont évolués séparément, même s’il est désormais de plus en plus courant
de proposer des approches à leur intersection. Cependant, ces deux domaines sont
dédiés à des tâches différentes, bien que complémentaires: tandis que les bases
de données sont utilisées pour stocker et interroger les données, l’apprentissage
propose des analyses de ces données, construit des modèles prédictifs, etc. Ainsi,
pour un problème d’apprentissage, les données sont généralement extraites de la
base, et traitées à l’extérieur de celle-ci. Ce processus d’extraction peut sembler
trivial, puisqu’il s’agit simplement d’une requête, souvent en SQL, pour sélectionner
les données pertinentes. Les difficultés inhérentes à ce procédé sont donc souvent
sous-estimées, et cette phase de sélection des données est souvent chronophage, en
raison des différents problèmes qui peuvent survenir: schéma mal spécifié, problème
d’intégration des données, données incomplètes, etc. Toutes ces problèmes peuvent
ensuite avoir un impact sur les performances du modèle d’apprentissage. Dans cette
thèse, nous proposons d’étudier les problèmes relatifs à cette sélection de données
et leurs impact sur les modèles prédictifs, en se basant sur une base de données
relationnelles, interrogée en SQL.

Tout d’abord, la base de laquelle sont extraites les données contient certainement
plus de données que ce qui est nécessaire pour le problème considéré: ainsi, la
première question est de déterminer comment séparer ce que souhaite l’utilisateur
du reste de la base. Nous proposons de voir ce problème comme de la classification,
où il faut séparer les tuples "intéressants" des autres. Plus précisément, puisqu’il est
probable qu’il y ait bien plus de tuples dans la base que ce que souhaite l’utilisateur,
il s’agit d’un problème de classification déséquilibrée. De nombreuses solutions
existent alors pour ce problème bien connu en apprentissage: nous proposons
une alternative, en tirant parti des contraintes de la base de données, et plus
particulièrement de ses dépendances fonctionnelles (DF). Nous proposons donc
une approche de sous-échantillonnage basée sur une distance via les DFs, via les
systèmes de fermeture.

Cependant, la sélection de données n’est pas uniquement un problème de classifica-
tion: en effet, il est aussi important de pouvoir décrire les données sélectionnées,

iv

pour les comprendre et valider la sélection. Dans une base de données, il est im-
portant d’avoir une requête SQL, qui peut être modifiée et réutilisée. Ainsi, nous
proposons une forme de complétion de requêtes SQL, sous la forme d’extensions de
requêtes qui permettent de mieux spécifier une requête très générale, jusqu’à arriver
aux tuples désirés.

Enfin, une fois les données sélectionnées dans la base, il est légitime de se demander
si elle permettent réellement de construire un modèle prédictif. Nous nous posons
donc la question d’évaluer l’adéquation entre des données et la tâche d’apprentissage
pour laquelle elles ont été sélectionnées. Puisqu’un modèle prédictif cherche à définir
une fonction entre les attributs et la classe à prédire, nous proposons d’évaluer
l’existence de cette fonction dans les données, via les dépendances fonctionnelles.
L’objectif est de déterminer s’il fait sens de construire un modèle à partir des données,
ou s’il est nécessaire d’affiner la sélection. Nous montrons comment comprendre
les limitations d’un modèle, notamment en déterminant les contre-exemples qui
empêchent la dépendance fonctionnelle entre les attributs et la classe d’être satisfaite.
Nous étudions enfin comment raffiner la sélection des données, en prenant en compte
le contexte d’apprentissage.

v

Acknowledgement

First of all, I would like to thank the two reviewers of this thesis, Sebastian Link and
Antoine Cornuejols: your insights on the manuscript and during the defense were
extremely valuable. I would also like to thank Nicole Bidoit-Tollu and Mohand-Said
Hacid for your presence during the defense and during my PhD committee.

I also have to express my deepest gratitude to my two supervisors, Jean-Marc Petit
and Marian Scuturici. You’ve trusted me since my first internship with you, and
taught me a lot. This three years of PhD have been intense and full of twists, but I’m
glad that you were by my side to guide me through all this ! I’m grateful for all of
our scientific discussions, for your support every time one of our paper was rejected,
and more generally for your kindness and support over the last years.

More generally I would like to thank the members of the LIRIS lab, with a special
thank to the database team (BD), for providing a rich and stimulating research
environment. I’m also grateful for everyone I had the pleasure to teach with at INSA
Lyon, an activity I’ve deeply enjoyed, and that allowed me to get my out of my
research from time to time. A big thank you to the administrative team for always
being helpful. I also thank the DataValor team, and to all the people I met during
the industrial collaborations: your insights have clearly been an important part of
this manuscript.

I also owe a huge thank you to the fellow PhD students that crossed my path during
these few years: Tarek, Hind, Chabha, Maelle, Amine, Julien, Romain V., Diana,
Florian, Aimene, Paul, Mohamed, Yann, Rémi, Adnene , Romain M., Lucas,... I
missed our daily lunch talks, and I’m sad covid did not give me the oppportunity to
enjoy them in the final months of this PhD. Also thank you to all the intern I’ve met
and sometimes supervised in these three years. And thank you to everyone I met
during my stay in Waterloo, with a special thank to Mina, Michael and Melica.

Finally, I would like to thank my friends, for their presence during this PhD, and
Julie D., for the guidance towards the end of this thesis. I also owe everything to
my family: I’d like to thank my parents for their help and support, in every sense of
the word, and for always encouraging me to go further during my studies. Thank
you also to my brothers, Vincent for you encouragement, presence, and for always
making me laugh (even during my defense) ; Thibaut also, especially for showing

vi

me the way towards a PhD, and for motivating me to be a doctor like you. I should
also thank the Dimech’s family for the support over the last eight years !

Finally, I have to address the final and biggest thank you to Maxime, who has been
here every step of the way, and has been an incredible support for me: this thesis
would clearly not be here without you. I’m incredibly thankful to have you by my
side, and I can’t wait for you to be my husband. Also I guess I should also thank our
cat Ella, who arrived in the middle of the PhD, clearly improved our everyday life,
and helped me to calm and relax while I was writing this thesis in the middle of a
global pandemic.

vii

List of publications

International Conferences

• Marie Le Guilly, Nassia Daouayry, Pierre-Loic Maisonneuve, Ammar Mechouche,
Jean-Marc Petit and Marian Scuturici. Contextualisation of Datasets for better
classification models: Application to Airbus Helicopters Flight Data, 24th Euro-
pean Conference on Advances in Databases and Information Systems (ADBIS),
2020, 10 pages.

• Marie Le Guilly, Claudia Capo, Marian Scuturici, Jean Marc Petit, Rémi Revellin,
Jocelyn Bonjour, and Gérald Cavalier. Attempt to better trust classification
models: Application to the Ageing of Refrigerated Transport Vehicles. 25th
International Symposium on Methodologies for Intelligent Systems (ISMIS’20),
2020, 10 pages.

• Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici and Ihab Ilyas. Ex-
plIQuE: Interactive Databases Exploration with SQL (demo paper). 28th ACM
International Conference on Information and Knowledge Management, CIKM
2019, China, 2019, 4 pages.

International conferences with abstract-based selection

• Marie Le Guilly, Claudia Capo, Léo Pape, Marian Scuturici, Jean Marc Petit,
Rémi Revellin, Jocelyn Bonjour, Gérald Cavalier. Ageing of refrigerated trans-
port vehicles: development of a numerical predictive model. 6th IIR conference
on sustainability and the cold chain, 2020, 9 pages.

• Marie Le Guilly, Jean-Marc Petit and Vasile-Marian Scuturici. A First Experi-
mental Study on Functional Dependencies for Imbalanced Datasets Classification.
Communications in Computer and Information Science » series, Springer, Revised
Selected Papers from the International Workshop ISIP, 2018, 17 pages.

Journals

• Marie Le Guilly, Jean-Marc Petit and Vasile-Marian Scuturici. Evaluating
classification feasibility using functional dependencies. Transactions on Large-

viii

Scale Data and Knowledge-Centered Systems (TLDKS), Revised selected paper
from BDA’2019, 2019, 27 pages.

National Conferences

• Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici. Evaluation de la
faisabilité de classification en utilisant les dépendances fonctionnelles. BDA
2019 35ème conférence sur la Gestion de Données — Principes, Technologies et
Applications. 2019, 12 pages.

• Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, Ihab Ilyas. ExplIQuE :
Exploration Interactive de Bases de Données en SQL (démo). BDA 2019 35ème
conférence sur la Gestion de Données — Principes, Technologies et Applications.
2019, 4 pages.

• Marie Le Guilly, Ihab Ilyas, Jean-Marc Petit and Vasile-Marian Scuturici. Parti-
tioning queries for data exploration using query extensions. BDA 2018 34ème
conférence sur la Gestion de Données — Principes, Technologies et Applications,.
2018, 12 pages.

• Marie Le Guilly. Langages de requêtes interactifs pour l’exploration de données
(Article Doctorant). BDA 2017 33ème conférence sur la Gestion de Données —
Principes, Technologies et Applications, 2017, 2 pages.

• Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici. Retour d’expérience
sur l’analyse des données d’un tunnelier. BDA 2017 33ème conférence sur la
Gestion de Données — Principes, Technologies et Applications. 2017, 6 pages.

ix

Contents

1 Introduction 2

1.1 Databases and Machine Learning . 2

1.2 Research questions . 4

1.2.1 Overview . 4

1.2.2 Selecting the desired data . 7

1.2.3 Data adequacy with the selected model 9

1.3 Contributions . 10

1.4 Outline . 12

2 Preliminaries 13

2.1 General databases notations . 13

2.2 Functional dependencies . 14

2.2.1 General definition . 14

2.2.2 Closure systems . 14

2.2.3 FD-based distance between relations 16

2.2.4 Evaluating FDs satisfaction 18

2.2.5 Non-crisp FDs . 19

2.3 Predictive models . 20

2.3.1 General definition . 20

2.3.2 Evaluating the model’s performances 21

2.3.3 Estimating the performances from the data 22

3 Data selection and imbalanced classification 23

3.1 Introduction . 23

3.1.1 Guided data selection . 23

3.1.2 Data selection as imbalanced classification 24

3.1.3 Problem statement . 25

3.2 Related Work . 27

3.2.1 Data Selection with example tuples 27

3.2.2 Imbalanced datasets classification 29

3.2.3 Distances between relations 30

x

3.3 Imbalanced datasets generation . 31

3.3.1 Proposed solution . 31

3.3.2 Synthetic closure systems generation 33

3.3.3 Data generation from closure systems 36

3.3.4 Random data generation for the majority class 41

3.3.5 Classification problem . 43

3.4 Experimentations . 44

3.4.1 Implementation . 44

3.4.2 Semantic distance and classification 45

3.4.3 General imbalanced dataset problem 46

3.4.4 Experimentations take-out lessons 47

3.5 Discussion on FDs and classification 47

3.6 Conclusion and perspectives . 48

3.6.1 Towards chapter 4 . 49

4 Data selection and exploration in SQL for imprecise queries 50

4.1 Introduction . 50

4.1.1 From data selection to data exploration 50

4.1.2 Exploration of relational databases 51

4.1.3 Imprecise relational queries 52

4.1.4 Query extensions . 54

4.1.5 Problem statement . 56

4.2 Related work . 57

4.3 Industrial motivation . 59

4.3.1 Context . 59

4.3.2 Database’s description . 60

4.3.3 Take-out lessons . 61

4.4 Query extensions definition . 62

4.5 Solution . 64

4.5.1 General approach . 64

4.5.2 Partitioning of the initial set of tuples 65

4.5.3 Construction of extensions for each subset of tuples 68

4.5.4 Algorithm proposal . 71

4.6 ExplIQuE: presentation of the web prototype 74

4.6.1 Implementation . 74

4.6.2 ExplIQuE’s features . 75

4.7 Scaling experimentations . 78

4.8 User experimentation . 83

4.8.1 Organization . 83

xi

4.8.2 Design of the test . 84
4.8.3 Test’s questions . 86
4.8.4 Test’s setup . 89
4.8.5 Results . 90

4.9 Conclusion and perspectives . 95
4.9.1 Towards chapter 5 . 96

5 Evaluating data adequacy with the predictive task 97
5.1 Introduction . 97

5.1.1 Data selection for predictive models 97
5.1.2 Trusting predictive models . 99
5.1.3 Existence of a function and dependencies 100
5.1.4 Problem statement . 101

5.2 Related work . 103
5.3 Estimating the model’s performances from the data 105

5.3.1 Existence versus determination of a function 105
5.3.2 Upper bound for accuracy of classifiers 106

5.4 Generation of difficult synthetic classification datasets 110
5.4.1 Synthetic data generation . 111
5.4.2 Experimentations . 114

5.5 Taking attributes domains into account 116
5.5.1 Limitations of crisp FDs . 117
5.5.2 Similarity-based solution . 121
5.5.3 Transitive similarity function and discretization 122
5.5.4 Choosing the best solution . 126

5.6 Understanding the model’s limitations 127
5.6.1 Importance of counterexamples 127
5.6.2 Leaff: a system for counterexamples exploration 128
5.6.3 Case study: prediction of the ageing of refrigerated vehicles . 130

5.7 Data contextualization . 137
5.7.1 The contextualization problem 137
5.7.2 Data selection of a context for classification 139
5.7.3 Case study: predictive maintenance for helicopters 142

5.8 Conclusion and perspectives . 149

6 Conclusion 151
6.1 Research summary . 151
6.2 Future work and perspectives . 152

Bibliography 153

Contents 1

Introduction 1
1.1 Databases and Machine Learning

The term "relational database" was first introduced in 1970 by Edgar F. Codd, in
his paper entitled "A relational model of data for large shared data banks" [Cod02]:
since then, relational databases, with databases management systems (DBMS), have
become a standard for storing and querying data, especially using SQL (structured
query language) to store, access, query and select the data that a database user is
looking for.

In parallel, as the volume of data recorded and stored has been continuously
increasing, there has been a growing interest in machine learning techniques, that
aim at building algorithms that can improve through experience, by learning from
the data they are provided: machine learning is therefore a way to gain value
out of data, to better understand phenomena, build predictive models, identify
patterns in the data, etc. Over the last decades, many tools such as machine learning
librairies and platforms have therefore been developed to make it easier to apply
such techniques, that are now widely used by companies in their daily processes, for
all sorts of application, from medical diagnosis to banking investment prediction,
defining a new filed which is roughly refered to as artificial intelligence.

Because they are both centered around data processing, relational databases and
machine learning are two closely related domains, that are involved at different
stages of the same process. But in practice, there is not so much overlapping between
the two, and they have historically grown as two separate research domains. On
one side, databases are used to store and query the data. Afterwards, when a
machine learning algorithm is applied, the data is extracted from the database, and
processed entirely externally, without any new interaction with the database. In this
philosophy, it can be roughly said that, in practice, the database is mainly used as a
data container, and the extraction process as a simple transformation from relational
tables to a CSV file. Even if research is now working on more integrated solutions,
many concrete applications in companies are based on this pattern.

2

From this general observation, the broad starting point of this thesis was to propose
solutions to increase the cross-fertilization between relational databases (DB) and
machine learning (ML), by proposing new ideas at the intersection of the two
domains. Such questions on this intersection of DB and ML have been raised in the
last decades; in 1996, Mannila and Imielisky introduced the term of database mining
[IM96], and argued in favor of the seeing data mining as a querying process:

" It is, of course, important work to close the gap between the inductive
learning tools and the database systems currently available. "

In this paper, they argue in favor of using all the performance enhanced that have
been developed for databases in order to also improve the performances in terms
of knowledge discovery. Similarly in [Cha98], Surajit Chaudhuri question the
intersection of databases and data mining:

"This raises the question as to what role, if any, database systems research
may contribute to area of data mining"

S. Chaudhuri argues that bringing databases and machine learning algorithms closer
might only be beneficial in terms of performance. These two approaches relate to
the notion of inductive databases introduced by Luc de Raedt [DR02], that would not
only store data objects but also relations and patterns between those objects. Several
solutions have been proposed that go in the direction claimed in these papers: for
example in [Zou+06], the authors have implemented an entire machine learning
library so that the algorithm can work with data stored in a DBMS rather than in
main memory. Alternatively, ATLAS [Wan+03] offers a SQL extension to perform
in-database data mining. More recently, [KR18] introduced a relational framework
for classifier engineering. Moreover, new solutions have been developed to propose
in-database learning, by relying on key concepts from relational databases, such as
data dependencies, to perform and optimize learning models directly in the DBMS
[Sch+16; AK+18].

All the aforementioned approaches aim at merging databases and machine learning
(or data mining), mainly by using key concepts from the database to optmise the
in-database learning of models, but the other way around is also possible: [Wan+16]
proposes a survey showing how deep learning and DBMS can benefit from each
other, in one direction or the other. Indeed, there also exists many approaches that
take another angle by using machine learning to address database problems. It is
for example very mainstream to build model to provide data exploration and assist
users in writing their queries (see for example [Bon+14; Tra+09; She+14]), or
to use recurrent neural networks to translate natural language sentences into SQL

1.1 Databases and Machine Learning 3

queries [Aff+19; Zho+17; Sah+16]. But other database-related problems can also
be addressed by ML algorithms, such as query plan generation [Mar+19], join order
selection [MP18; Tru+19], cardinality estimation [Liu+15; Ort+19], etc. Machine
learning has even been used for automatic DBMS configuration tuning [VA+17].

In this context, the overall objective of this thesis is to explore these two possible
directions, by considering how relational databases and machine learning can benefit
from one another. We propose to consider the traditional setting in which these two
domains are naturally used together in the same process, which is the building of
a predictive model, using a ML algorithm and training data stored in a relational
database.

1.2 Research questions

1.2.1 Overview

As we focus on the building of a predictive model, let’s start by considering how it
usually works in a traditional setting. The process is usually divided into two distinct
steps:

• The process starts with extracting the data from the DBMS in which it is stored:
this is done with one or several SQL queries, and the results in stored in a
single file (usually CSV).

• Then the model is built, by learning from the data contained in the file, and the
traditional ML worflow is applied (training, testing, validation, vizualisation,
etc).

This illustrates the main functionalities attributed to each domain: DMBS are for
storing and querying, ML for models’ construction. But these two simple steps hide
much more difficult questions, and in practice, it is not so easy to extract the desired
data, so that it corresponds to the data necessary for the considered predictive model.
Actually, in turns out in practice to be the main bottleneck in many ML processes, as
around 80% of the time is dedicated to data preprocessing [Scu+15]. This is due to
many different factors: the data quality might not be satisfying, the schema might
not be correctly specified, there might be missing values, etc. As a result, writing a
SQL query is hard, especially because the reality of the available data is usually far
from the expectations and the needs for the considered predictive task. Additionally,
in this thesis we limit the scope to a single database, and do not consider the case of

4 Chapter 1 Introduction

data scattered among different databases, requiring to perform schema mapping or
more generally data integration (see [Roh+19] for an overview): these additional
issues are also extremely time consuming.

As a result, in this thesis, our main focus is on this transition from the database to
the training model, by first enumerating the various research questions that arise in
this context, and then addressing each of them with solutions proposal. As a result,
the general problem that is the guideline of this thesis can be summarized by the
following question:

How to select in relational databases the most appropriate data for the
building of a considered predictive model?

This question is heavily motivated by observations from the processes that take place
in many companies’ workflow for predictive task, and that was observed in several
industrial collaborations that took place during this thesis. Several contributions have
been developed from problems encountered in these industries: Dodin Campenon
Bernard (tunnel boring machine), Cemafroid (refrigerated transport vehicles), and
Airbus Helicopters. During all these collaborations that all concerned different
predictive tasks, similar problems appeared around the data selection. Indeed, in
practical context, there is a very high volume of available data, from which it is
sometimes hard to select. For example, it can be hard to have access to the raw
data, because it is scattered among various databases, and is therefore concatenated
already using SQL queries that cannot be changed or accessed. Sometimes, the data
is managed by an external service provider, making it difficult to have access to all
the necessary data: in some cases, the company has to pay the provider for each
new SQL query, making it difficult (and costly) to modify the initial data selection.
All these observations made in practical settings highlighted the difficulty to control
the available data, and the necessity to develop techniques to make the most of what
is available to domain experts. For this reason, we consider that the available data
is sometimes far from databases experts expectation, and is sometimes more like a
single CSV file dumped into a table, than a nice well-defined database with clean
constraints.

Moreover, it should be underlined that such tasks are at the intersection of ML and
DB, and are therefore highly dependent on the user’s level in each field: database
experts might have less knowledge on ML and vice-versa, because they come from
different training backgrounds. Therefore, a specialist of one filed is likely to have
more basic knowledge of the other. Additionally, it is easy to think that the other
field is easy, because the tricky problems appear only when diving more deeply into
the process.

1.2 Research questions 5

Fig. 1.1: Integration of the research questions in the traditional process of data selection
for the construction of predictive models

From all of these considerations, we defined a general framework, that is traditionally
followed by database users to select the data in such contexts: they start with a
query to obtain a set of tuples from the relational database, and use these data to
train (and then test and validate) a predictive model: the relation obtained with
a SQL query therefore becomes a dataset1 for a ML process. This "simple" process
is represented on the left part of figure 1.1. But this linear workflows holds many
questions, that the user is likely to ask herself:

• In the relational database, how can she selects the relevant data she wants?

• How can she know she selected the data she needs for her predictive task?

These two questions are easy to formulate, but much more trickier to answer: they
indeed hide many research questions, summarized on the right part of figure 1.1:
each bold rectangle represents one of these questions, addressed in this thesis.
We now detail each of the aforementioned user’s questions, and link them to the
problems represented on figure 1.1.

1In the remainder of the thesis, when clear from context, we will use both terms relation and dataset
to designate the set of tuples selected in the database.

6 Chapter 1 Introduction

1.2.2 Selecting the desired data

Let’s start with the first question, that represents the upper part of figure 1.1:
considering a relational database, the user is trying to select part of it to use as
training data. To this end, she is likely to have a general idea of what are the tuples
she wants. But to get these tuples requires her to perform two intermediate steps:

• First, she needs to define what are the tuples she is looking for

• Then, she needs to formulate the SQL query that retrieves these tuples

These two steps are tightly linked together, and their difficulty varies according to
different factors: size of the database, schema’s complexity, user’s SQL experience,
etc. It is therefore important to propose general solutions adapted to these different
contexts, and to keep in mind the complexity of databases that, in the current Big
Data era, are only getting bigger. Because they are bigger, the overall quality of the
database can be impacted, by ill-defined schemas, large tables, useless names of
columns, etc.

In addition, because getting value out of data now appears as a priority in many
industrial applications, more and more users are confronted to the databases, some
with only a limited experience of data processing and querying: in this context, the
above questions are even more complex and important.

Identifying the tuples

Considering the first question, it appears that before writing a SQL query, it is
important to have an idea of what are the tuples the user is looking for, and more
importantly what distinguishes them from the other tuples in the database: being
able to separate the desired tuples from the others is what makes it possible to later
write a SQL query, with selection conditions that capture the desired characteristics.
This problem is well-known and relates to query-by-example approaches [Lis+18],
as it seeks to start from the data to identify the tuples of interest, before writing
the corresponding query in a second time, a problem also known as query reverse
engineering [Tra+14].

It is important to underline that the set of tuples a user is trying to select is usually
several orders of magnitude smaller than the total number of tuples in the database.
As a consequence, the valuable information is often difficult to locate, because it is
hidden among all the other tuples that are not of interest. From these considerations,

1.2 Research questions 7

our proposition in this thesis is to see this problem as an imbalanced classification
one, for which the objective is to classify between the tuples of interest (the minority
class) and the others (the majority class). However, this imbalanced classification
problem is very specific, because it takes place in the context of a relational database,
so that the data is likely to have some specificities, such as, for example, data
dependencies that might exists in the DB to due schema’s normalization, of thanks to
domain experts specifications. We therefore ask the following research question:

Given a dataset obtained from a SQL query, can we use the functional
dependencies that hold in the database to improve the classification
between relevant and non-relevant tuples?

In this thesis, we propose to consider this problem from a theoretical point of view
by restricting ourselves to a single relation, and by studying various conjectures on
synthetic dataset. The ultimate goal is to assess whether or not such an approach
can be extended to real-life datasets to improve the identification of relevant tuples
in a database.

Writing the SQL query

However, being able to identify the relevant tuples is not enough, and it is important
to be able to select them using a SQL query. First, such a query is a characterization
of the selected tuples, helping her to better understand the selected data. Moreover,
having a query allows her to modify some of the selection conditions, and to therefore
explore the surroundings of the selected data, to make sure she has considered all
possibilities, and has therefore selected all the tuples she needs: this is especially
useful if the user is not entirely confident of her selection, and does not necessarily
know immediately how to write her final SQL query. Finally, having a SQL query
makes it possible to reuse it later, if the database has been modified and/or enriched
with additional tuples: in this scenario, using the same query, the user is able to catch
the new tuples that correspond to the same selection conditions, and to therefore
improve her selected data with tuples from this new instance of the database.

It is not always easy to come up with the final SQL query selecting all the desired
data at once. Therefore, in this thesis, our proposition is to guide the user to write a
query iteratively until she reaches exactly the data she is looking for. We therefore
consider to following question:

How to identify the necessary selection clauses to capture all the tuples
the user is looking for?

8 Chapter 1 Introduction

This relates to classic databases issues on query writing, that are often addressed
recently with natural language processing (NLP) solutions [Aff+19]. Answering
this research question also requires to combine the query specification with some
data exploration [Idr+15], to better grasp the selection condition that characterize
what the user is looking for, and to remove any tuples that she does not want. In
this thesis we therefore propose an iterative solution to query writing, by suggesting
additional selection predicates, called extensions, that allow the user to specify an
initial general query: the purpose of such extensions is to both refine the query
to reach the desired tuples, and to better understand the currently selected tuples,
to assess whether or not the data selected is what the user is looking for. Such
extensions are a form of query completion, as they allow a user to complete her
query when she is stuck and does not know what to add to her query.

1.2.3 Data adequacy with the selected model

Once the the appropriate tuples are selected, the user should be able to obtain a
relation containing all the tuples is looking for, which is the answer to the query
she has managed to write. This is where the second main question of this thesis
starts, related to the the predictive model the user is trying to build. This question
represents all the bottom part of figure 1.1, and can be reformulated as follows:

Is the selected data, identified by the user, adequate to answer the
considered predictive task?

In this question, the adequacy of the data requires to evaluate if the selected data
is the one that will allow to built the most qualitative predictive model. It is
a broad question, known to be hard in machine learning and statistics. If data
selection is difficult, it is even trickier if it has to be optimized with respect to the
predictive model to be built. As a consequence, this initial problem suggest two
more questions:

• If the selected data seems inadequate, how to identify what should be modified
to better select the data with respect to the predictive task

• If the data seems adequate, then the model can be trained. However, the data
used to train the model has a huge impact on the performances and limitations
of the dataset: based on the selected data, how to identify and explain such
limitations?

1.2 Research questions 9

In total, we therefore identified three main research questions, highlighted on figure
1.1. To answer these questions, we propose to start from the same consideration
for all of them: the purpose of predictive models is to approximate a function, that
maps the features (the data used to make the prediction) to the value to predict.
Based on this, it appears necessary for the training data to correspond to a function,
so that the predictive algorithm can try to infer it. Therefore, to assess the adequacy
of the selected data to the predictive task, it is possible to evaluate the existence of a
function between the selected features and the class. This can be seen as a way to
avoid building models on data in which there does not exists one: it’s always possible
to run an algorithm, but what it produces should make sense and be representative
of an existing phenomenon in the data. The following question can therefore be
asked:

How can we assess whether or not the selected data follows a function
so that it makes sense for an algorithm to define one?

Such a question is related to estimating a model’s performances before building one,
only by analyzing the data available to train the model. In this context, Bayes error
[Fuk13] is a way to estimate classifier’s accuracy for a given problem: but this upper
bound turns out to be very complicated to compute in practice.

In this thesis, we propose to evaluate the satisfaction of the functional dependency
between such features and the class: if this dependency is satisfied (or satisfied
enough), then it can be assumed that the selected data is adequate, because there
exists a function in the data, that an algorithm can seek to approximate. Otherwise,
the data selection might have to be refined.

Regarding such refinement of the data selection, we propose to analyze what, in
the selected data, prevents the functional dependency from being satisfied: by
understanding what are the tuples that prevents this satisfaction, it is possible to
construct selection clauses that can be used to remove these tuples.

Moreover, if the functional dependency is considered to be enough satisfied in the
data for a model to be trained, or if additional data selection is not possible,it is also
possible to use the few tuples that are not consistent with the dependency to explain
the limitations of the models due to the data it is trained on.

1.3 Contributions

To summarize the contributions of this thesis can be divided into two main parts:

10 Chapter 1 Introduction

1. Assisting users in data selection. For this first part, we propose two main
contributions:

• First, we aim at separating the tuples the user is looking from all the
other tuples in the database, by considering this problem as imbalanced
classification. To this end, we propose to exploit the database setting,
by investigating whether or not the relation’s dependencies can be used
to better classify between the minority and majority classes. We study
the influence of the distance between the two classes, using a distance
measure that is based on the functional dependencies satisfied by each
class. More precisely, we perform an undersampling of the majority class
based the closure systems of each class. To this end, we generate synthetic
datasets corresponding to this setting, and compare the performances of
various classification algorithms on such datasets compared to random
sampling. This work has been presented at ISIP international workshop,
and published in their post-proceedings [Gui+18a].

• We then question the formulation of a SQL query to help the user select
the desired data, by proposing an iterative approach based on query
extensions. These are additional selection predicates, that can be used by
the user to better understand the data selected by her initial query, and to
refine it in order to only select the tuples of interest. We expose a use case
that motivated the creation of such extensions, and develop an algorithm
to compute extensions for a given SQL query, as well as vizualisations to
assist the user in choosing an extension. We propose a web application
to use this approach, validated with scaling experimentations, as well
as a user validation with 70 participants. This work has been presented
at the BDA2018 national conference [Gui+18b], and a demo has been
proposed at CIKM2019 [Gui+19].

2. Evaluating the adequacy of the selected data with the predictive task. For this,
we rely on our approach based on the existence of a function between the
features and the class in the training dataset, based on the satisfaction of the
corresponding functional dependency. We focus on classification problems,
and explain some leads to generalize the approach for regression cases. For
this, we propose three contributions:

• Based on the G3 measure [KM95] of the functional dependency, we
point out how it can be used to qualify the adequacy of the data for the
considered classification task. We show that this value can be used as an
upper bound to classifier’s accuracy on the considered data. We validate

1.3 Contributions 11

this approach on both synthetic and real classification dataset. These
results have been exposed at BDA2019 [LG+19]. We also discuss how to
deal with data that require to use non-crisp functional dependencies, and
how this impact our results.

• When the data is judged adequate to go on with the classification task,
or if data selection cannot be refined, even though the dependency
might not be entirely satisfied, we propose to use the analysis of the
tuples preventing the dependency from being satisfied, in order to better
understand the limitations of the model. We illustrate this approach
with a use case on the data from Cemafroid, a company dealing with
refrigerated transport vehicles. The results from this collaboration showed
how important it is to discuss counterexamples with domain experts, i.e
to analyze what are the tuples that prevent the FD from being satisfied. A
paper presenting the results of this study has been accepted at ISMIS2020
[Leg].

• When data selection has to be refined, we propose to use the current data
and the tuples preventing the dependency’s satisfaction to better define
what is the data that should be kept, because it is coherent with the
existence of a function in the data. We propose a systematic methodology
to identify a coherent context in the data, in which the dependency
is more satisfied, while allowing to select as many tuples as possible.
We illustrate this contribution with a use case on Airbus Helicopters
data, on which we compared our contextualization approach to the one
manually performed by Airbus’ experts: these results will be presented at
ADBIS2020 [LG+20].

1.4 Outline

We start by introducing all necessary preliminaries in chapter 2. Chapter 3 exposes
our proposition to consider data selection as an imbalanced classification problem.
Then, we develop how to write the SQL query selecting the desired data using query
extensions in chapter 4. We move on to the adequacy of the selected data for the
predictive task in chapter 5, before concluding this thesis in chapter 6.

12 Chapter 1 Introduction

Preliminaries 2
Chapter’s outline
In this chapter, we introduce the notions that will be used in the following
chapters of this thesis. These notions are used in the different contributions, in
order to propose new solutions regarding data selection for predictive models.

We start by introducing general notations related to relational databases, in
section 2.1. We then move on to functional dependencies, and to all the concepts
related to them (closure systems, Armstrong relations, etc), and we discuss how
to evaluate the satisfaction of an FD in section 2.2. Finally, we introduce the
preliminaries regarding predicting models, and discuss the evaluation of their
performances and limitations in section 2.3.

2.1 General databases notations

We first recall basic notations and definitions on relational databases. It is assumed
that the reader is familiar with databases notations (see [LL12]).

Let U be a set of attributes. A relation schema R is a name associated with attributes
of U , i.e. R ⊆ U . A database schema R is a set of relation schemas.

Let D be a set of constants, A ∈ U and R a relation schema. The domain of A is
denoted by dom(A) ⊆ D. A tuple t over R is a function from R to D|R|. Let X ⊆ R.
The restriction of a tuple t to X is denoted by t[X].

A relation r over R is a set of tuples over R. The active domain of A in r, denoted by
ADOM(A, r), is the set of values taken by A in r. The active domain of r, denoted
by ADOM(r), is the set of values in r.

In the sequel, letters from the beginning of the alphabet (A,B,C, ...) denote a single
attribute, while letters from the end of the alphabet denotes union of attributes.
When clear from context, set {A,B,C} is refered to as ABC, while XY is equivalent
to X ∪ Y .

13

We consider the SQL and the relational algebra query languages without any restric-
tion. We will switch between both languages when clear from context. A query Q
is defined on a database schema R and ans(Q, d) is the result of the evaluation of
Q against d. To define the extensions of any query Q, we will use two operators:
πX the projection defined as usual with X ⊆ U , and σF the selection, where F is a
conjunction of atomic formulas of the form AθB or Aθv, with A,B ∈ U , v ∈ D and
θ a binary operator in operation in the set {<,>,≤,≥,=, 6=}.

2.2 Functional dependencies

2.2.1 General definition

Definition 1. We now define the syntax and the semantics of a Functional Dependency
(FD). Let R be a relation schema, and X,Y ⊆ R.

Syntax A FD on R is an expression of the form R : X → Y (or simply X → Y when
R is clear from context)

Let r be a relation over R and X → Y a DF on R.

Semantic X → Y is satisfied in r, denoted by r |= X → Y , if and only if:

for all t1, t2 ∈ r, if ∀A ∈ X, t1[A] = t2[A] then ∀B ∈ Y, t1[B] = t2[B]

2.2.2 Closure systems

Let F be a set of FDs on U and X ⊆ U . The closure of X w.r.t F , denoted by X+
F , is

defined as : X+
F = {A ∈ U | F |= X → A} where |= means "logical implication".

X is closed w.r.t F if X+
F = X. The closure system CL(F) of F is the set of closed

sets of F : CL(F) = {X ⊆ U |X = X+
F }

There exists a unique minimal subfamily of CL(F) irreducible by intersection,
denoted by IRR(F), such that:

for all X,Y, Z ∈ IRR(F), if X ∩ Y = Z, then X = Z or Y = Z.

Note that we have IRR(F) ⊆ CL(F) ⊆ P (R), where P (R) denotes the powerset of
R.

14 Chapter 2 Preliminaries

ABC

AB AC BC

A B C

∅

Fig. 2.1: Poset of closures for schema R = ABC

Example 1. Let’s consider a schema R = ABC. Then |R| = 3. The poset of closures
for R is presented on figure 2.1: it consists of 6 elements (23 +R+ ∅) distributed over
4 levels.

We also denote for a set S of attributes over R its closure by intersection S∩ as:

S∩ = {X ∈ P (R)|X =
⋂
S′, S′ ⊆ S}

Finally, the concept of Armstrong relations [Arm74] allows to define relations
satisfying a set of functional dependencies, and only those dependencies.

Definition 2. Let F be a set of FD on R. A relation r on R is an Armstrong relation
for F if r |= X → Y if and only if F |= X → Y .

There exists a relationship between Armstrong relations and closure systems [Bee+84].
It requires agree sets to be defined. Let r be a relation over R and t1, t2 ∈ r.
Given two tuples, their agree set is defined as: ag(t1, t2) = {A ∈ R|t1[A] = t2[A]}.
Given a relation, its agree sets are then: ag(r) = {ag(t1, t2)|t1, t2 ∈ r, t1 6= t2}.

Then, the relationship can be given as a theorem [Bee+84]:

Theorem 1. Let F be a set of FDs on R and r be a relation over R. r is an Armstrong
relation for F if and only if:

IRR(F) ⊆ ag(r) ⊆ CL(F)

2.2 Functional dependencies 15

2.2.3 FD-based distance between relations

It is possible to use the dependencies that hold in two relations to define the distance
between them: this was proposed by Katona and Sali in [Kat+10]. Formally,
the distance between two databases, instances of the same schema, is defined as
follows:

Definition 3. [Kat+10] Let r1 and r2 be two relations over R, and F1 (respectively
F2) the FDs statisfied in r1 (respectively r2). The distance between r1 and r2 is:

d(r1, r2) = |CL(F1)4 CL(F2)|

where A4B denotes the symmetric difference of the two sets, and defined as follows:

A4B = A \B ∪B \A.

It is necessary to understand the intuitions that lie behind it. Closure systems are
intimately related to functional dependencies: therefore similar closure systems lead
to similar FDs, and vice-versa. As a consequence, regardless of the values in the
instances of the database, this distance characterizes the similarity of two sets of
functional dependencies. From definition 3, it follows that distant relations tend
to have opposite FDs, while close ones will have similar or even shared FDs. The
symmetric distance is used here to identify how different the two closure systems
are: the more distant they are, the less elements they have in common, and therefore
the higher the symmetric distance.

Moreover, it is possible to know the largest possible distance between two relations
based on the size of their schemas. This is based on the following property:

Property 1. [Kat+10] Let |R| = n. Then, for any two instances of schema R.:

d(r1, r2) ≤ 2n − 2

Example 2. Let’s take the two closure systems from relations defined on a schema
schema R = ABC defined as follows:

• CL1 = {ABC,AB,BC,B, ∅}

• CL2 = {ABC,AC,A,C, ∅}

Then, for two relations r1 and r2 with respective closure systems CL1 and CL2:

16 Chapter 2 Preliminaries

ABC

AB AC BC

A B C

∅

Fig. 2.2: Illustration of two closure systems with a maximum symmetric difference, defined
on the same schema

d(r1, r2) = |{AB,AC,A,BC,B,C}| = 23 − 2 = 6

This symmetric difference is illustrated on figure 2.2, that shows how the two closures
systems as complementary different, allowing for a maximum symmetric difference,
and therefore a maximum distant between relations satisfying such closure systems.
As a result, r1 is a far as possible from r2 and vice-versa. Moreover, they respect the
following sets of functional dependencies:

• r1 |= {A→ B,C → B}

• r2 |= {B → AC}

This illustrates this intuition of "opposites" functional dependencies in distant relations.
For example, the two following relations would be consistent with these constraints:

r1 A B C

0 0 0
0 0 1
2 0 0
3 3 3

r2 A B C

0 0 0
0 1 0
0 2 2
3 3 0

This notion of distance based on closure systems is clearly semantic: it does not
look at all at the domains of the relation’s attributes, or at their types. Instead, it
captures underlying patterns and structure, through functional dependencies, and
evaluates the distance between relations as the similarity in terms of such structure
and patterns between them.

2.2 Functional dependencies 17

2.2.4 Evaluating FDs satisfaction

Essentially, given a relation, an FD is either satisfied or not. Rather than comparing
all the pair of tuples in the dataset, it is possible to verify the satisfaction of an FD
using the following simple yet powerful property [Huh+99]:

Property 2. Let r be a relation over R. Then:

r |= X → C ⇐⇒ |πX∪{C}(r)| = |πX(r)|

But when the FD is not satisfied, it is possible to evaluate how far the relation is
from satisfying the considered FD. Indeed, the unsatisfaction of the FD comes from
pairs of tuple that violate the constraint modeled by the FD. Such pairs of tuples are
called counterexamples, and are defined as follows:

Definition 4. Let r be a relation over R and X → Y a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → Y) and defined as follows:

CE(X → Y, r) = {(t1, t2)|t1, t2 ∈ r, for all A ∈ X,
t1[A] = t2[A] and there exists B ∈ Y, t1[B] 6= t2[B]}

The counterexamples are therefore tightly linked to agree sets.

The problem is then to evaluate what is the importance of counterexamples in
the relation: if there are just a few of them, then the FD is not far from being
satisfied, and on the opposite, too many counterexamples makes the FD far from
being satisfied. As a result, it is necessary to quantify their number, a problem
that is more subtle than it may seem. Indeed, as counterexamples involve pairs of
tuples, it means that one tuple may be involved in several counterexamples, so the
distribution of counterexamples among the tuples should be taken into account.

This problem has been addressed in [KM95], that proposes three measures to
evaluate the satisfaction of a functional dependency X → Y in a relation r. Other
measures, based on information theory, are presented in [DR00], but are out of the
scope of this paper.

The first measure, G1, gives the proportion of counterexamples in the relation:

G1(X → Y, r) = |{(u, v)|u, v ∈ r, u[X] = v[X], u[Y] 6= v[Y]}|
|r|2

18 Chapter 2 Preliminaries

Using definition 4, this can be rewritten as:

G1(X → Y, r) = |CE(X → Y, r)|
|r|2

Following this first measure, it is also possible to determine the proportion of tuples
involved in counterexamples. This measure G2 is given as follows:

G2(X → Y, r) = |{u|u ∈ r, ∃v ∈ r : u[X] = v[X], u[Y] 6= v[Y]}|
|r|

These two metrics are designed to evaluate the importance of counterexamples in
the relation. Similarly, measure G3 computes the size of the set of tuples in r to
obtain a maximal new relation s satisfying X → Y . Contrary to [KM95] that present
this measure as an error, we propose it as follows:

G3(X → Y, r) = max({|s||s ⊆ r, s |= X → Y })
|r|

2.2.5 Non-crisp FDs

All the previous concepts introduced only consider crisp functional dependencies,
which are based on the comparison of values using the strict equality. However,
there exists many applications in which this assumption is not representative of
the field reality, because two values might be considered as equal even though
they are not strictly equals. In this context, we introduce the necessary concept
to take into account similarity when dealing with an FD’s satisfaction, and assess
how it impacts the notions previously introduced to evaluate it. In this context, it is
therefore necessary to introduce a form of similarity measure to compare the values:
depending on the desired result, it is therefore possible to relax the equality on the
left-hand side, or on both sides of the dependency.

A similarity operator ≈A on an given attribute A is defined on dom(A)× dom(A)→
{true, false}, such that the output is true if the two compared values are similar,
and false otherwise. Given a, b ∈ dom(A), we denote by a ≈A b if a and b are similar,
and a 6≈A b otherwise.

Reflexivity a ≈A a

Symmetry if a ≈A b then b ≈A a

2.2 Functional dependencies 19

It should be noted that a similarity measure is not necessarily transitive, meaning
that if for a, b, c ∈ dom(A), if a ≈A b and b ≈A c, there is no guaranty for the
similarity of a and c.

Similarity can be extended to a set X of attributes: a ≈X b ⇐⇒ ∀A ∈ X, a ≈A b.
Based on this, the satisfaction of non-crisp FD (|=s) is a straightforward extension of
crisp FD.

Definition 5. r |=s X → Y iff for all t1, t2 ∈ r, if for all A ∈ X, t1[A] ≈A t2[A], then
for all B ∈ Y, t1[B] ≈B t2[B]

It is therefore possible to redefine some of the previous concepts, this time for
non-crisp functional dependencies:

• CEs(X → Y, r) = {(t1, t2)|t1, t2 ∈ r, for all A ∈ X, t1[A] ≈A t2[A] and there exists B ∈
Y, t1[B] ≈B t2[B]}

• Gs
1(X → Y, r) = |CEs(X→Y,r)|

|r|2

• Gs
2(X → Y, r) = |{u|u∈r,∃v∈r:u[X]≈Xv[X],u[Y] 6≈Y v[Y]}|

|r|

• Gs
3(X → Y, r) = 1− Max{|s|:s⊆r,s|=sX→Y }

|r|

All this relates directly to alternative FDs that have been defined. For example, metric
functional dependencies [Kou+09] allow similarity on the right-hand part (Y),
while using the equality on X. In a complimentary manner, matching dependencies
[Fan+09] relax the left-hand part with similarity measure, while requiring an exact
match for the Y values.

2.3 Predictive models

2.3.1 General definition

Predictive models are used to predict an outcome, based on statistics: their purpose
is to use the available data to predict future values. In machine learning such models
are used especially for supervised prediction: the model is trained on data for which
the outcome is known. It can be a classification model (the number of values to
predict is limited and known) or regression (the value to predict is continuous). In
this thesis, we mostly consider classification problem, and latter on discuss how to
extend our approach to regression ones.

20 Chapter 2 Preliminaries

Traditionally, a supervised classification problem (see [Moh+18]) consists in a set
of N training examples, of the form {(x1, y1), ..., (xN , yN)} where xi is the feature
vector of the i-th example and yi its label. The number of label (also known as class),
k, is limited and usually much smaller than the number of examples (k = 2 in binary
classification problems). Given the training examples, classification is the task of
learning a target function g that maps each example xi to one of the k classes.

The function g, known as a the model (or classifier), is an element of some space of
possible functions G, usually called the hypothesis space. The objective of a learning
algorithm is to output the classifier with the lowest possible error rate, which is the
portion of misclassified examples according to their ground truth label.

It is sometimes convenient to represent g using a scoring function f : X × Y → R
such that g is defined as returning the y value that gives the highest score:

g(x) = arg max
y

f(x, y)

This optimal function can take different forms, depending on the learning algorithm
used to define it: polynomial, exponential, sometimes not even expressible using
simple formulas (black boxes). This function g is often referred to as the model of
the classification task.

For sake of simplification, we express a classification problem using relational
databases notations. In the sequel, we will therefore consider a relation r0(A1, . . . , An, C)
with N tuples, where for any tuple ti, ti[A1 . . . An] = xi and ti[C] = yi. In addi-
tion, we consider that traditional feature selection methods (see [AA+11]) have
been applied and consider the subset X ⊆ {A1 . . . An} of attributes selected for the
classification process.

2.3.2 Evaluating the model’s performances

In order for a predictive model to be useful, it is necessary that it performs satisfyingly
with good performances: this means that he should make as many correct prediction
as possible, and as few errors as possible. There as therefore been many measures
developed to evaluate a model’s performances. In this thesis, we mainly use accuracy,
a simple yet useful measure, measuring, for a model M and a relation r to evaluate
it on, the proportion of correct prediction. More precisely:

accuracy(M, r) = number of correct predictions
|r|

2.3 Predictive models 21

It should be noted that in order to train a predictive model, the available data is
usually divided into at least two sets:

Training set It consists in the data used to fit the initial model

Testing set It is the data used to first assess the model’s performances, and consists
in data that is not in the training set, to provide an unbiased evaluation.

2.3.3 Estimating the performances from the data

In machine learning, estimating the performances of a classifier is a problem that
has been studied, because it gives an objective to reach for when training a model.
The main proposition to estimate this is Bayes error [Fuk13], which is defined as the
lowest possible error for any classifier, and computed as follows:

Definition 6. The Bayes error EBayes for a multiclass classifier from X to C is calcu-
lated as follows:

EBayes = 1−
∑

Ci 6=Cmax,x

∫
x∈Hi

P (Ci|x)p(x) dx

where x is an instance, Ci is a class into which an instance is classified, Hi is the
area/region that a classifier function h classifies as Ci.

Given a data distribution, Bayes error is the probability for a tuple to be misclassified
by a model, if this model knows the true class probabilities. Bayes error is therefore
a very nice theoretical tool, but turns out to be very difficult to estimate in practice,
because it requires to estimate integrals over distribution functions that are most
likely unknown. As a result, solutions to approximate Bayes error and to compute it
in very specific situations have been proposed such as in [TG96]. But because of the
definition of this error itself, it is difficult to compute it without making asssumptions
and hypothesis on the data, or whithout having additional information on the data
distribution.

Similarly, the Vapnik–Chervonenkis (VC) dimension [Vap+94] is also a decription
of a classifier’s abilities, but is also hard to compute in practice. It measures the
"capacity" of a space of functions that can be learned by a statistical classification
algorithm: intuitively, it corresponds to the number of points for which a function
can be found to predict the class, such that the function does not make any error.

22 Chapter 2 Preliminaries

Data selection and
imbalanced classification

3

Chapter’s outline
In this chapter, we explain how data selection can be seen as an imbalanced
classification problem, where the tuples to be selected are much fewer than
the volume of available ones in the database. We therefore propose an un-
dersampling solution, based on the distance between two relations relying on
the dependencies of these relations and there closure systems. We test this
approach by generating synthetic datasets, and propose an evaluation using
several classification algorithms.

We introduce the problem addressed in this chapter in section 3.1, and related
work in section 3.2. Our approahch based on the generation of synthetic data is
presented in section 3.3. Based on this, experimentations are detailed in section
3.4. We discuss the persectives of this work and conclude in section 3.6.

3.1 Introduction

3.1.1 Guided data selection

The selection of the desired data is the task of finding the relevant subset of tuples
among all the ones available in the considered database. At first sight, this problem
can seem trivial, but in practice it can turn out to be extremely complex. Indeed,
the reality of how relational databases are currently used is often distant from the
theoretical concepts of databases foundations. The database’s schema complexity
can make it more difficult to locate the desired attribute, if there are too many
columns and/or table, if the name of columns is not explicit, etc. This is especially
true nowadays, as because of the vast amount of available data, domain experts
do not necessarily work on raw data, but rather on concatenation of several data
sources, and therefore on results that might already have been obtained from an

23

unknown SQL query. They therefore have to do their best with what is given to them,
and in this context, writing a SQL query can appear anecdotal: the main problem is
to sort between the data of interest and unrelevant tuples, among all the ones that
the experts has been given access to.

The user’s qualification also has an important impact on the data selection process:
depending on her knowledge of the database and of SQL, the time required to select
the required data can greatly vary. As a result, the solution proposed to address
these various problems should rely on minimal knowledge from the user.

In this context, one possible approach is to ask the user what are the tuples of
interest, and to determine, based on her assessment, what are the tuples of interest,
and what are the ones that can be discarded. This can be done with a minimal user
implication in the form of a binary input, with a simple yes/no answer to indicate if a
given tuple is interesting or not: such techniques are called example-based [Lis+18].
From this labeling, it is possible to constitute a basic labeled dataset, that can then
be used to apply well-known classification methods to determine if a tuple should be
returned to the user or not. As a result, once the training set labeled by the user is
available, all the other tuples from the database can be automatically processed.

3.1.2 Data selection as imbalanced classification

In this chapter, we focus on the sorting of the tuples, to help a database’s user to
identify the one that are of interest to her. Essentially, we aim at distinguishing what
the user wants from the rest of the database, to help her select the appropriate data.
Whether it is by asking the user to manually label part of the tuples, or by inferring
what are the tuples of interest, the final result is a form of binary dataset with all the
tuples of the database labelled as interesting or not. This is a form of virtual dataset,
where only one class should be explicitly specified, which is the one containing the
tuples of interest. The other class can then be constructed by inference, considering
all the other tuples in the database as part of it.

As presented before, such a dataset is of high interest to assist the user in writing
her queries. Whatever the method or the purpose, all these different tasks can be
summed up as learning, from this binary dataset, to classify the tuples in two classes.
As a result, in this chapter, we propose to consider the data selection problem as a
classification one.

Clearly, this classification problem is an imbalanced one: the distribution of the
two classes is skewed, as the set of tuples required by the user is usually much

24 Chapter 3 Data selection and imbalanced classification

smaller than the amount of tuples available in the database. This is also why the
data selection problem is so difficult: identifying the tuples is sometimes like looking
for a needle in a haystack. Additionally, like for most imbalanced problem, the most
important class is the minority one, that is also the most difficult one to predict due
to the lack of training example with respect to the size of the minority one. In the
case of the data selection problem, it is especially important to have a good recall for
the minority class, to make sure that all the relevant tuples are retrieved, and to not
miss any relevant tuple: this is related to the problem of why not queries [Bid+14],
that aim at explaining why a tuple is not selected by a given query. Such tuples can
be considered as false negatives: they should be selected, but they weren’t. A good
precision is also important, to not have too many false positives: this would overload
the user with useless tuples, and give her too many tuples that she does not need.

3.1.3 Problem statement

Imbalanceness is a well-known problem in machine learning, but looking at it from
the prism of data selection opens new possibilities. As a result, we propose to
consider a specific aspect of relation data, that is the data dependencies that exists
between the columns of a given database. Functional dependencies have proven
to be a key concept for databases design [Abi+95], or for data quality and data
cleaning [Boh+07]. There exists many algorithms do discover the dependencies
that hold in given relation, such as TANE [Huh+99]: it is also reasonable to assume
that these dependencies can be directly given by a domain expert, as she usually
known what are the domain’s constraints that the data should satisfies.

Functional dependencies give powerful global constraints on the database structure,
by describing relationships between the columns. It is therefore very interesting to
notice that dependencies are a key concept in databases, but is much less considered
in machine learning, especially when building predictive models.

Additionally, one can make the assumption that the set of tuples that are interesting
for the user is not a random collection of tuples, but rather a set of tuples that are
likely to share some common characteristics. It is therefore likely that the set of
interesting tuples satisfies some functional dependencies, as the different tuples are
more likely to follow similar trends. Based on this assumption, the intuition is that
in opposition, the majority class, that is the set of non-interesting tuples does not
satisfy the same dependencies, or even satisfies opposite ones. Ideally, it is then
possible to estimate the difference between the two classes, in terms of functional

3.1 Introduction 25

dependencies, using some sort of distance to be able to estimate how different they
are.

Considering the overall majority class, it might not be very distant from the minority
one, especially due to the diverse data it contains: but as we are in an imbalanced
setting, it is possible to only consider a subset of the majority class. The objective
would therefore be to identify the subset of data, in the majority class, that is, in terms
of dependencies, as far as possible from the minority class. This would therefore
identify a subpart of the majority class that is very different from the minority one,
and that would therefore be the most "opposite" class for a classification problem. As
a consequence, in this chapter, we propose to study a new form of undersampling,
and to see if it can be used to better classify the tuples of interest for a user.

To summarize, the general idea is to consider a set of functional dependencies
satisfied by the minority class, and to define the set of functional dependencies that
are as distant as possible from it. The challenge is then to identify the tuples in the
majority class that, together, satisfy exactly (or as many as possible) this second set
of dependencies. Traditional classification techniques can then be applied on this
new dataset, to solve the various tasks at hand related to data selection.

Our approach is therefore centered around one main conjecture: it should be easier
to classify between two sets that are distant1. Therefore, before thinking about the
general solution, which is not trivial and raises several combinatorial challenges, we
propose to study this conjecture, and to see how it applies in the specific context of
imbalanced datasets. To this end, we ask the two following questions:

(1) Is it easier to classify imbalanced datasets with distant classes?

(2) Can functional dependencies help to identify better balanced classifi-
cation datasets, by undersampling the majority class?

The objective of this chapter is as follows: instead of getting dependencies from
existing data, we propose to first determine the required constraints in order to
then generate synthetic data accordingly. This makes it possible to fix the dis-
tance between the considered classes, and to control the various parameters of the
experimentations. We can then express our problem statement:

Is it possible to find synthetic datasets verifying this conjecture:
"Datasets that are distant in terms of DF are easier to classify"?

1For the rest of this chapter, when clear from context, we will use the words distant and distance to
refer to the distance in terms of functional dependencies

26 Chapter 3 Data selection and imbalanced classification

After considering this first question, we can move to the one closer to data selection
and imbalanced classification:

Given a synthetic imbalanced dataset, is classification easier when the
majority data for the training set is undersampled in order to have two

distant classes?

To answer this, the contributions of this chapter are as follows :

• The use of a semantic distance based on functional dependencies and closure
systems, as described in [KS12].

• The construction of synthetic datasets such that the distance between the
minority and the majority class is maximum.

• The construction of imbalanced classification datasets, such that there exists a
subset of the majority class that is as distant as possible from the minority one.

• Experimentations, applying various classification models, to compare classifiers
performances when discriminating between the different datasets generated.

The purpose is first to point out if synthetic datasets generated as distant are easier
to classify than random datasets. Then, further experimentations verify how well
classifier trained on such datasets adapt when tested on the imbalanced dataset.

3.2 Related Work

3.2.1 Data Selection with example tuples

Being able to classify tuples as relevant or irrelevant is very useful for data selection
problems, for which it is not clear how to select the desired tuples, and therefore
for which the query to pose is not clear. For this reason, many solutions have
been proposed to automatically retrieve tuples and/or write queries that return the
desired tuples, that are based on a subset of tuples labelled by the user according
to different techniques. This is why, most of the time, these methods have two
objectives: identify the tuples of interest, but also design the query returning such
tuples. Indeed, the query is usually necessary to characterize the set of tuples, so
that it can be reused later, or on different instances of the database.

3.2 Related Work 27

This is exactly the purpose of example-based methods: they use a few input from
the user, that are given as examples of what she finds relevant, in order to derive
all the tuples that are of interest, and therefore the query she is looking for. An
overview of such methods can be found in [Lis+18]. Historically, query-by-example
has been introduced in [Zlo75] as a language, in order to specify a query using a
sort of skeleton, so that SQL is not necessary to write the query. However, it just
allows to specify the different columns of the query in a simpler manner, but is
not example-based in the sense that it does not retrieve tuples that are related to
the given example: in this case, the example are used to give the general pattern
for all the tuples that should be retrieved, as a representation of the desired query
output.

Globally, the purpose of example-based methods is to find the query returning a
given set of tuples (labeled as interesting), a problem called the query-by-output
problem, or query reverse engineering. Sometimes, there might be several possible
queries for the same set of examples. In [Tra+09], this problem is treated as a binary
classification one: the approach is strict, as all tuples must be returned by the identi-
fied queries. In comparison, [She+14] allows for query returning approximately the
example tuples, so that the queries can be found more efficiently.

But in addition to the tuples labeled as interesting, it is also important to retrieve
tuples similar to these, that the user might not have labeled. The key to example
based methods is therefore similarity: their purpose is, from a few tuples given
or labeled by the user, to retrieve all the tuples that are similar enough to these
examples. This requires to be able to define the similarity between the tuples, and to
define a threshold. This is also the purpose of classification algorithms in this setting:
define conditions to group the tuples that are similar, based on different algorithmic
strategies. To help the user select among all the possible queries, [Li+15] offers
to determine what distinguishes one query from another, returning the labeled
examples, so that user understands what is the most appropriate query for her need.
Similar approaches include [WC17] for which users have to specify both positive and
negative examples, an approach also used in [Bon+14]. All these approaches usually
use a form of binary classification. The main problem is usually the complexity
of the queries, a problem addressed in [Zha+13] that allows to consider queries
more complex than the usual SPJ (select-project-join) used by other approaches. In
[Mar+18], the authors compare three different methods to derive a SQL query from
examples (greedy algorithm, decision tree and genetic programming), showing that
decision trees usually produce the most acurate queries from example, even though
there are sometimes too long to summarize the user’s needs efficiently. [Dim+14]

28 Chapter 3 Data selection and imbalanced classification

introduces AIDE, a framework that ask relevance feedback from the user, in order to
predict the query that retrieves the tuples she is looking for.

If we take the example of query reformulation for data exploration [Cum+17],
there is a direct imbalanceness problem: in order to reformulate a given query,
the authors classify between the tuples from this query and other tuples from the
database. For this second set, the number of candidate tuples is much bigger that the
result set of the considered query. The authors bypass this imbalanced problem by
proposing a heuristic that essentially select only a subset of the available tuples from
the pool of non-interesting ones. This is therefore a form of guided undersampling
of the majority class, that uses the SQL query given by the user to create the set of
interesting tuples. In this work, the authors therefore exploit the relational language
used to identify the minority class in order to constitute a balanced classification
dataset. However, this approach only cares about the size of the two classes, but does
not consider the data itself or its structure: the selected tuples might therefore not
be the most interesting ones to perform the best possible classification possible.

To summarize, our approach is similar to example-based methods, in the sense that
we focus on the data to perform the data selection, rather than starting with the
query writing. Our main caracteristic is to consider this problem as imbalanced
classification, and to therefore propose an alternative method taking advantage of
the database’s setting.

3.2.2 Imbalanced datasets classification

Imbalanced dataset classification is a well-known and recurrent problem in machine
learning. It occurs every time one of the classes of a classification dataset is much
smaller than the others: in practice, it occurs in many real-life application, such as
medical diagnosis or fraud detection. In the setting with only two classes (binary
classification), the class with few examples is denoted as the minority one, and by
contrast, the other is the majority one. In this situation, classifiers are biased and tend
to always predict the majority class as there are many more examples of it. But often
the minority class is actually much more interesting and is the one that data analysts
want to predict accurately. One example of this is a dataset of banking transactions,
which only contains a tiny proportion of fraudulent transactions, against thousands
of regular ones. But this tiny portion is still much more interesting as they are the
one that are crucial to detect.

Because of its importance and recurrence, the imbalanced dataset problem has
received a lot of attention from the machine learning community. They have

3.2 Related Work 29

proposed various approaches to deal with it [Kot+06], in order to improve the
performances of classification algorithms over such datasets. These approaches
can be roughly divided into three families: data-centered , algorithm-centered, and
hybrid [Kau+19].

Data-centered solutions aim at reshaping the dataset to make it more balanced, by
modifying the data distribution among the classes. Such approaches are usually
based on resampling of the data. It is for example possible to undersample the
majority class, by removing some of its tuples, to give it a size similar to the one of
the minority class. This undersampling can be random [KP03], or guided by the
constitution of the minority class [KM+97]. It is also possible to oversample the
minority class, by generating synthetic samples in the minority class, to get it closer
to the size of the majority one. The most common appraoch to oversampling is the
synthetic minority oversampling technique (SMOTE) [Cha+02], that interpolates
new instances based on the nearest neighbors in the minority class. Due to the
success of this method, many variants have been proposed [Fer+18]. Some also
propose to use the information from the majority class to synthetize the minority one
[Sha+18]. Of course, it is even possible to combine oversampling and undersampling
on the same dataset. In this chapter, our solution is based on the undersampling on
the majority class.

At the algorithmic level, the purpose it to adapt existing classification algorithms, so
that they take into account the specificity of imbalanced datasets. One-class learning
on the minority class has for example shown good performances on imbalanced data
[RK04]. Cost-sensitive approaches can also be of interest [Dom99], as they give
more importance to the misclassification of a sample based on its class. Additionally,
boosting algorithms [FS95] rely on the output of several classifiers to produce a final
decision.

Finally, some solutions have been proposed to combine the resampling of the dataset
to an adapted algorithm. This is the case of the mixture-of-experts approach [EJ01]
that combine boosting with resampling of the data given to each of the different
classifier.

3.2.3 Distances between relations

The approach developed in this chapter is based on the distance between two re-
lations. The notion of distance has been studied for years. In computer science,
distances are often required, especially in machine learning, for example for Clus-
tering algorithms or K-nearest-neighbors (see [Han+11]). It is possible to define

30 Chapter 3 Data selection and imbalanced classification

distances between numerical values, vectors, but also words, sentences, ... However,
the notion of distance between databases is not a notion that seems to have been
given much attention. A first attempt can be found in [Mül+06], that proposes an
update distance between databases, similarly to the edit distance for strings: the
distance between two databases is the minimal number of modification operations
to be applied to one database to obtain the other one. However, this distance is not
symmetric, and is mostly defined for cases of multiple replications of a database,
when the same database is duplicated and modified at different places. In this chap-
ter, we use the distance between relations as defined by Katona and Sali [Kat+10],
that relies on the closure systems of the relations.

3.3 Imbalanced datasets generation

3.3.1 Proposed solution

The semantic distance based on closure systems from [KS12] gives an indication of
how two relations are distant regarding their functional dependencies. It is therefore
valuable to propose a new data selection approach, if it can allow to better classify
imbalanced datasets with constraints from relation databases.

In order to evaluate if functional dependencies can be used for undersampling the
majority class of non-interesting tuples for the data selection problem, we propose
to experimentally evaluate two conjectures:

1. In a balanced setting, is it easier to classify when the two classes are distant?
The purpose of this question is to see if, even without the imbalanceness, the
distance between the classes could be helpful for the classification.

2. In an imbalanced setting, is an FD-based undersampling strategy helpful to
improve the classifiers performances? This second question evaluates if it
is worth developing an undersampling approach for the imbalanced data
selection problem.

To this end, we therefore need a imbalanced dataset. We therefore consider one table
representing this dataset, such that it contains a minority class r−, and a majority
class M : the tuples are labeled with the class they belong to. Such a dataset is easy
to generate. However, because of the specific setting of this chapter, it is necessary
to have guaranties on the majority class: there should exists a sample of it, r+, such
that it is as distant as possible from r−. We also need to have a random sample from

3.3 Imbalanced datasets generation 31

A1 A2 ... A_n C

r− ...
0
...
0

M ...

1
1
1

...

1
1
1

A1 A2 ... A_n C

r+ ...
1
...
1

A1 A2 ... A_n C

sM ...
1
...
1

minority class

majority class

distance-based sample

random sample

Fig. 3.1: Structure of the different relations for the imbalanced dataset

M that we denote by sM . The structure of those different relations is outlined on
figure 3.1. This way, it is possible to answer our first question by comparing the
classification between r+ and r− to the one between sM and r−. We can then move
to the second question by training the classifiers in the same two settings, but using
tuples from M to test their performances, in order to see if the undersampling for
the training set improves the performances of algorithms when generalizing to an
imbalanced dataset.

We follow the following five steps process:

Step 1: For a given schema R = {A1, ..., An} of size n, create two closure systems
CF+ and CF−, such that their symmetric difference is maximum and their
size comparable (of the same order).

Step 2: From step 1, generate two Armstrong relations r+ and r−, respectfully for
CF+ and CF−.

Step 3: Train a classification model to discriminate between r+ and r−.

Step 4: Create a synthetic majority relation M over R, from which r+ is supposed
to be a "semantic" sample based on the FD-distance.

Step 5: Sample M to get sM , such that |sM | = |r−|, and train classification models
on sM and r−.

32 Chapter 3 Data selection and imbalanced classification

Step 6: Test the models on the testing sets corresponding to the two initial conjec-
tures.

This approach raises several questions and sub-problems, that are addressed in the
following sections. We first discuss the generation of the closure systems so that they
are distant. We then discuss the generation of relations from such closure systems,
and specifically address the problem of the data values taken to build r−, r+ and
therefore M . Indeed, by definition, FDs care about data equality, but independently
of the data values themselves. However, the classification algorithms do care about
them, and therefore the generation strategy might modify the results obtained in our
experiments. It is therefore important to approach this problem carefully. Finally,
we discuss the classification process that shall be used for the experimentations.

3.3.2 Synthetic closure systems generation

Let’s first consider the closure systems generation: they should satisfy some proper-
ties in order to be consistent with the setting of this chapter:

Property 3. Let CF− and CF+ be the two closure systems of two relations over R, as
distant as possible and of similar size, and closed by intersection. Then:

• |CF− 4 CF+| = 2|R| − 2

• |CF−| ≈ |CF+|

• CF− and CF+ are closed by intersection

Generating such closure systems is not a trivial problem: given a schema R of size n,
many different closures systems can be obtained satisfying this condition, but they
are not easy to find, especially as the schema’s size grows.

This problem is interesting and difficult, and the main objective is to be able to
automate the generation of such systems, so that many different configurations can
be tested, on instances with more than two or three attributes. Indeed, the design
of such closure systems quickly becomes impossible to do manually. To be able to
generate automatically two closure systems with a maximized symmetric difference,
we therefore propose algorithm 1. It uses a level-wise (top-down) breadth-first
approach strategy on P(R). The algorithm works as follows:

• The two closure systems CF− and CF+ are both initialized with R.

3.3 Imbalanced datasets generation 33

• At a given level i in P(R), all elements of size i that do not belong in either
CF− or CF+ are considered as available candidates for insertion in one of the
closure systems. The candidates are selected one by one in a random order, so
that each execution of the algorithm can produce a different result. This way,
we can obtain various pairs of closure systems to work with.

• Before inserting a candidate element e, it is necessary to verify if its insertion
would satisfy the properties of a closed set. Thus, if the intersection of an
element e with any of the elements of same size in CF− is an element from
CF+, then e has to be added to CF+, and vice-versa.

• Otherwise an element is added to the closed set with the smallest number of
elements. This is to obtain the closest possible size between CF− and CF+.

• Once it is decided in which set an element is added, it is also necessary ensure
that the closure system is closed by intersection, and to therefore add all the
missing elemnts corresponding to the required intersections.

The idea behind this algorithm is, given a schema R, to divide evenly all elements
from P(R) into the closure systems. Therefore, they can not be constituted at
random, and the insertion of an elements in a closed set has to guaranty the
properties given in property 3. This algorithm allows to obtain diverse closure
systems even for schema of consequent size, automatizing a task which is not
feasible "manually". This turns out to be valuable for experimentations, as various
closure systems, and therefore various relations, can be tested using this algorithm.
It should however be noted that this algorithm has an exponential complexity in the
size of R, that limits the size of schema that can be used, if the closure systems are
to be obtained in a reasonable amount of time. In practice, we set |R| = 12 in our
experimentations.

Example 3. Let’s take once again the example of a schema R = ABC. The different
steps of the algorithm are illustrated on figure 3.2. On this figure, each step of the
algorithm is indicated by a number next to each element of the closure system, CF− is
represented in red and CF+ in blue. The different steps correspond to the following
actions:

1. After initialization, the two closure systems both contain the same two elements,
that are the top and the bottom from P(R). After this step, we have:

CF− = {ABC, ∅}
CF+ = {ABC, ∅}

34 Chapter 3 Data selection and imbalanced classification

ABC

AB AC BC

A B C

∅

(1)

(2) (4)(3)

(4)(5) (6)

(1)

Fig. 3.2: Illustration of algorithm 1 applied to a schema of size 3

2. We then move on to the second level of P(R that contains all elements of size 2.
At random, we can start with element AB. At this stage of the algorithm, it can
be added to the two closure systems, as it does not cause any intersection problem,
and as the two sytems are of same size. Let’s add it to CF−. We now have:

CF− = {ABC, ∅, AB}
CF+ = {ABC, ∅}

3. Let’s move on to element AC: it does not have any intersection problem with any
of the closures, but as |CF+| ≤ |CF−|, it is automatically added to CF+. As a
result:

CF− = {ABC, ∅, AB}
CF+ = {ABC, ∅, AC}

4. Then there is element BC to consider. There is no intersection problem. As they
are of same size, let’s add BC to CF−: automatically, it is necessary to also add
B to CF− because BC ∩AB = B. The closure systems are now as follows:

CF− = {ABC, ∅, AB,BC,B}
CF+ = {ABC, ∅, AC}

5. Let’s then move to the next level of P(R): there are only two candidates left, A
and C, let’s start with A. It does not pose any intersection problem, but because
|CF+| ≤ |CF−|, A is added to CF+.

6. For the same reasons, C is also added to CF+. We therefore obtain the two
following closure systems:

3.3 Imbalanced datasets generation 35

CF− = {ABC, ∅, AB,BC,B}
CF+ = {ABC, ∅, AC,A,C}

Algorithm 1: Closure systems generation procedure

1 procedure ClosureSystems (R);
Input :A schema R
Output :Two closure systems CF− and CF+ such that

|CF− 4 CF+| = 2|R| − 2
2 CF− = {R, ∅}
3 CF+ = {R, ∅}

4 for l = |R| to l = 1 do
5 available = {e ∈ P(R)| |e| = l, e 6∈ CF− and e 6∈ CF+}
6 for each e in available do
7 if (CF− ∪ e)∩

⋂
CF+ 6= ∅ then

8 CF+ = (CF+ ∪ e)∩

9 end
10 else if (CF+ ∪ e)∩

⋂
CF− 6= ∅ then

11 CF− = (CF− ∪ e)∩

12 end
13 if e 6∈ CF− and e 6∈ CF+ then
14 if |CF−| < |CF+| then
15 CF− = (CF− ∪ e)∩

16 end
17 else
18 CF+ = (CF+ ∪ e)∩

19 end

20 end

21 end

22 end
23 return CF+, CF−

3.3.3 Data generation from closure systems

Once the two closure systems are generated, the objective is to generate two relations
corresponding to each of them. It is quite easy to do so using Armstrong relations,
as explained in [Arm74]. Indeed, the structure of an Armstrong relation for a set of

36 Chapter 3 Data selection and imbalanced classification

functional dependencies (and thus a closure system) is a problem that has already
been addressed (see [Bee+84]). It relies on the results of theorem 1 (see page 15.

The general idea is to encode each element from the closure system into a tuple
of the relation. Additionally, because some of these elements can be obtained by
the intersection of others, it is only necessary to consider the irreducible set of the
closure system.

The generation of relations works as follows: given a closure system CF , an Arm-
strong relation is defined with a reference tuple t0: ∀X ∈ CF , add a tuple t encoding
the element X, t[X] = t0[X] and t[A] = i, with A ∈ R \X, where i is a value used
to encode this tuple. This generation procedure is completely independent from the
domain of the attributes.

Example 4. Let’s take the first closure systems from example 3:

CF− = {ABC,AB,BC,B, ∅}
Therefore IRR− = {ABC,AB,BC, ∅}

Relation r− is derived from IRR−:

r− A B C Encodes

0 0 0 reference
0 0 1 AB
2 0 0 BC
3 3 3 ∅

Similarly CF+ = {ABC,AC,A,C, ∅}
Therefore IRR+ = {ABC,AC,A,C}

Thus r+ is derived from IRR+:

r+ A B C Encodes

0 0 0 reference
0 1 0 AC
0 2 2 A
3 3 0 C

3.3 Imbalanced datasets generation 37

With this basic example, several important questions arise. Indeed, when generating
such relations, it is necessary to decide what values the different tuples will take: if
we used integers in the example, it could be possible to use continuous values, or
even textual values. Additionally, in this example, each encoding of a new element
is done by increasing the previous encoding value of 1. Different strategies could be
applied to generate relations just as valid as these ones: they could use values at
random, increase the encoding values differently, etc.

Having two closure systems also adds some complexity to the generation of the
relation: indeed, in the previous example, the two relations are generated using the
same encoding values. But it is possible to use completely different ones, to have an
overlap between the two, etc.

Finally, the future use of those relations, i.e for classification problems, should
also be taken into account. Each of these relations will correspond to a class in a
classification dataset. There is therefore a balance to be found, in order to obtain a
convincing classification dataset. There are two possible pitfalls to avoid:

• If the values of the two relations are completely different, then the classification
problem becomes trivial: it is easy to discriminate between two classes if they
don’t have any values in common (for example one with only positive values,
and the other with only negative ones). As a consequence, the values taken by
the two classes should overlap in some way.

• If the values used to generate the two relations are the same, then it is not
representative of a classification problem: indeed predictive models are build
on the assumptions that there exists specific characteristics in each class,
and are mostly based on distinguishing the classes based on the value over
the different features. Each relation should therefore have its specificities
that characterize its data, that can be identified by classifiers to discriminate
between the two classes. To this end, it is necessary for the two classes to be
partially distinct in terms of values used.

In these consideration, the choice of the reference values for each relation is espe-
cially important:

• If it is the same for both, it would mean that the two relations would have one
tuple in common, and a great number of similar tuples, as they would use the
same values and therefore have very similar active domains.

• if in one relation, all the tuples share the same reference value, the classification
problem might become too trivial, as the algorithm might be biased toward

38 Chapter 3 Data selection and imbalanced classification

learning whether or not this specific reference value appears in a tuple, and
therefore discriminate between the classes solely based on their respective
reference value.

Finding balance is a crucial point of our process. Based on all this questioning, the
following choices where made:

• The values used for the data generation are integers: numerical values are
easier to handle for classifiers. Moreover, this reduces the number of possible
values in contrast with continuous values, while still allowing to mark a real
difference between the two generated relations. Only values in N are therefore
considered. This choice is important, as the predictive models are based on
the values available to classify: we therefore discuss alternatives at the end of
this chapter.

• For each relation, the reference value used to encode a given tuple is based
on the previous tuple that was inserted in the relation. This way, there is
not too much redundancy of a single reference value that would appear in
every tuple. More specifically, to encode an element X of the closure system,
a tuple ti is generated based on its predecessor ti−1, ti[X] = ti−1[X] and
t[A] = random_value, with A ∈ R \X, and random_value the random value
selected to encode ti.

• The two relations do not share any common reference value: this avoids too
much overlapping between the two relations.

• Other values that are not used as references are selected at random, to ensure
a diversity in the dataset, and to allow some overlapping between the two
classes in order to make the classification process less trivial.

We formalize our approach in algorithm 2, that details how the relations are created
in order to respect the given constraints. It works as follows:

• Given a schema R of size n, a pool of possible values is generated, with all
integers values from 0 to 2n + 2, which is equal to |CF−| + |CF+| plus two
reference values. This represents all the values that have to be used to generate
the two Armstrong relations.

• Then function ArmstrongRelation is applied to CF− to generate r−.

• In ArmstrongRelation, a reference value is selected at random in the pool of
possible values. It is used to construct the initial reference tuple, required to
encode the first element of the closure system. The value used at this step is

3.3 Imbalanced datasets generation 39

removed from the pool of available values, so it is then no longer a possible
new value (line 10).

• Then for each element in the considered closure system, a random value is
selected (at random) in the pool of remaining possible values. It is used to
create a new tuple, and the random value is thus removed from the pool. Each
attribute from the considered element is encoded with respect to the previous
tuple in the relation.

• ArmstrongRelation ends when all the elements of the considered closure
system have been considered.

• Once r− is complete, the same procedure applies for r+, using the remaining
values in the pool of available values.

Example 5. Following example 4, applying algorithm 2, the following relations could
be obtained:

r− A B C encodes

1 1 1 reference
1 1 6 AB
4 1 6 BC
5 5 5 ∅

r+ A B C encodes

3 3 3 reference
3 7 3 AC
3 2 2 A
9 9 2 C

40 Chapter 3 Data selection and imbalanced classification

Algorithm 2: Relations generation given two closure systems

1 procedure RelationsFromCS (R, CF−, CF+);
Input :A schema R, two closures systems CF− and CF+

Output :Two relations r− and r+ with respective closure systems CF− and
CF+ and overlapping active domains

2 n = |R|
3 values = [0...2n + 2]
4 r− = ArmstrongRelation(CF−, values, n)
5 r+ = ArmstrongRelation(CF+, values, n)
6 return r−, r+

7 Function ArmstrongRelation(CF, values, n):
8 r ← |R| ∗ |CF | matrix
9 refvalue = random(values)

10 values.remove(refvalue)
11 tref = [refvalue] * n
12 r[0] = tref

13 i = 1
14 for each e ∈ CF do
15 randomvalue = random(values)
16 values.remove(randomvalue)
17 t = [randomvalue] * n
18 for each X ∈ e do
19 t[X] = r[i− 1][X]
20 end
21 r[i] = t

22 i+ +
23 end
24 return r

3.3.4 Random data generation for the majority class

Once the two relations derived from closure systems are generated, we obtain the
two relations r+ and r−. There are therefore other relations to generate. According
to the approach presented in section 3.3.1, it is now necessary to generate relations
the relation M , which is the majority class, and to obtain a random sample sM

from it. We recall that r+ is supposed to be a sample from M , to recreate an
undersampling strategy to the imbalanced dataset problem. The generation of the

3.3 Imbalanced datasets generation 41

majority class M therefore has to be designed carefully, and to be coherent with the
generation technique previously applied. One M has been generated, it is trivial to
generate sM .

First, in order to be coherent with the generation of r+ and r−, only values in N are
considered. Then, the most complex problem is to generate a relation M such that
is is believable to say that r+ is a sample of M . To this end, it is necessary that M
and r+ share many common values. The definition of the active domain of M is
therefore crucial, and various strategies are possible. We propose to compare the
two following ones:

• ADOM(M) = ADOM(r+)

• ADOM(M) = ADOM(r+ ∪ r−)

The first one proposes the exact same conditions when comparing between r− versus
r+ and r− versus Ms, as sM will therefore have an active domain similar to r+. The
second possibility introduces some noise as sM and r− could have values in common,
which would provide a more challenging dataset. These two options are explored in
the experimentations (section 3.4).

Once the active domain of M is set, its generation is not complicated, and the
number of possible tuples is bounded. Indeed, given a schema R of size n, there is a
limited number of tuples (yet big), that can be generated:

Property 4. Let R be a schema of size n, and M a relation over R such that
|ADOM(M)| = m. The maximal number of tuples for M denoted by max(|M |) is the
number of permutations of size n from an alphabet of m elements, i.e max(|M |) = mn.

This grows considerably fast, and clearly the size of M can be arbitrarily large.
Therefore, to limit the size of M , we consider the scaling factor sf , which is the
ratio of size difference between r− and M :

sf = |M |
|r−|

This allows to adapt the "imbalanceness" of the dataset, as it is possible to play with
the size difference between the majority and minority classes. Based on this scaling
factor, |r−| ∗ sf tuples are generated, corresponding to the majority class M .

Finally, relation sM is just a random sample of size |r−| over M ∪ r+, just like a
random undersampling of the majority class for an imbalanced dataset problem.

42 Chapter 3 Data selection and imbalanced classification

3.3.5 Classification problem

At this point, all the generation strategies for the different required relations have
been defined. We have the minority class r−, and the majority one M . r+ and sM

are samples from M , such that r+ is as distant as possible from r− in terms of FDs,
while sM is just a random sample from M without any FD consideration.

The purpose is now to apply classification algorithms on different datasets and
compare their performances, and to vary the training and testing sets to address
our two initial conjectures. Classification datasets are constituted by adding one
additional class attribute.

Example 6. Let’s take relations r− and r+ from example 5. They constitute the
following classification dataset:

A B C class

r− 1 1 1 -
1 1 6 -
4 1 6 -
5 5 5 -

r+ 3 3 3 +
3 7 3 +
3 2 2 +
9 9 2 +

The same process is applied by adding the label "+" to tuples from M (and therefore of
sm).

For the first set of experimentations, the objective is to see if it is easier to classify
between distant datasets, and the comparison is therefore done between r− versus
r+ and r− versus sM . Using the available datasets, we build two datasets:

• r− versus r+

• r− versus sM

For our second experimentation, we study the conjecture that the training on distant
sets is beneficial for imbalanced classification. To do so, the same relations can
be used but with a slight change in the testing and training sets. Indeed, the
philosophy of the data generation presented previously is to emulate an imbalanced
classification problem, with r+ and sM being two different undersampling of a

3.3 Imbalanced datasets generation 43

bigger relation M . Therefore we train the models exactly as before, but the testing
sets are now different: both models are now evaluated using tuples from r− and M ,
as in a real imbalanced dataset scenario.

Finally, in order to assess the performances of the classification algorithms in these
different settings, it is necessary to use some metrics. We decided to use accuracy
as a first line metric. For our second conjecture, it should be noted that in general,
accuracy should be manipulated very carefully when dealing with imbalanced
datasets, as high accuracy can be reached while misclassifying the entire minority
class. In the setting of this chapter, accuracy as a first-line metric is useful to
determine if it is worth going further with more elaborate measure: indeed, if the
accuracy is bad, then it means that other metrics will be even worse, and that other
elements of the process should be improved before moving to more specific metrics.
If accuracy is good, then it is worth going further to see how the different classes
are classified, using for example precision, recall, geometric mean [Bar+03], etc.

3.4 Experimentations

The objective of the experimentations conducted in this chapter is to evaluate two
conjectures, presented in section 3.3.1. To this end, we first present the implementa-
tion of these experimentations, before presenting the results for the different scenarii
conducted.

3.4.1 Implementation

All the generation algorithms presented in section 3.3 algorithms have been im-
plemented using Python 3. All classification algorithms are from the scikit-learn
machine learning library [Ped+11]. Several classification algorithms were selected
for the experimentations (see [Han+11] for details), with a fixed parametrization
that is usually the default setting of the library. The algorithms and the parameters
used are as follows:

• K Nearest Neighbors: classification according to the class of surrounding
examples. Fixed k = 3.

• Decision Tree: learns decision rules and builds a tree. Fixed a maximum depth
of 5 for the tree.

44 Chapter 3 Data selection and imbalanced classification

• Random Forest: several decision trees on different subsamples of the data.
Maximum depth of 5 for 10 trees in total.

• AdaBoost on a decision tree: give different weights to examples, by increasing
the weight of misclassified examples.

• Neural Network: fixed two hidden layers with 12 neurons each.

• Naive Bayes: probabilistic model based on Bayes’ theorem, with the "naive"
assumption that variables are independent.

• Linear Support vector machine: classic SVM with linear kernel

• Radial Basis Function (RBF) kernel Support vector machine: RBF kernel.

3.4.2 Semantic distance and classification

The first set of experimentations aims at studying the first conjecture on which this
paper is based: it is easier to classify between distant sets. For experimentations, the
size of the schema is fixed to n = 12. Then:

• |P(R)| = 4096

• |r+|+ |r−| = 4099

Moreover, sf is fixed to 100: |M | is therefore around 200 000 tuples, and sampled to
get |sM | = 2096. The two necessary classification datasets are then built, and divided
for training and testing, with an even distribution among the classes. Training test is
composed of 80% of a dataset, the remaining 20% are for testing.

The experimentation was performed on ten different instances generated with
algorithms 1 and 2, with each time new closure systems generation and new relations,
considering the random components of each algorithm. This is done to make sure
any interesting observation is not due to a specific relation, but really a general
phenomenon.

Table 3.1 presents the average accuracy score obtained for each algorithm over
the ten iterations, comparing the two possible choices for ADOM(Z). The main
take-out from these results is that the accuracy is better for models that are based on
distant classes: for every configuration, the result is either equal or better for models
trained and tested on r+ ∪ r−. Moreover, if the observed difference is anecdotal for
some algorithms such as Random Forest and Adaboost, it is pretty important for
others like neural networks. Finally, the active domain of the majority class does not

3.4 Experimentations 45

ADOM(M) = ADOM(r+) ADOM(M) = ADOM(r+ ∪ r−)
Classifier r− vs r+ r− vs sM r− vs r+ r− vs sM

Nearest Neighbors 0.95 0.87 0.93 0.77
Decision Tree 0.99 0.99 0.99 0.96

Random Forest 0.99 0.99 1.0 0.99
AdaBoost 0.99 0.99 0.99 0.99

Neural Net 0.81 0.72 0.85 0.77
Naive Bayes 0.99 0.99 1.0 0.75

RBF SVM 0.82 0.79 0.77 0.70
Linear SVM 0.62 0.48 0.67 0.47

Tab. 3.1: Accuracy of each classifier for each data generation strategy. Both models are
evaluated on their own testing sets.

seem to affect our observations, as results are also good with noisy data, and even
better in some cases.

Those results are very encouraging, as it appears that classifiers perform better for
the distant instances, supporting the conjecture that it is easier to classify between
distant sets.

3.4.3 General imbalanced dataset problem

In this second experimentation, the training sets stay the same: two balanced
datasets, one with two classes voluntarily built as distant, and another with a
random sample of the majority class against the minority one. But the testing
conditions are different, as the objective is now to see if this different training can
improve classifier’s performances on the imbalanced dataset. The testing set is
therefore an imbalanced dataset, with all samples from r− and M that have not
been used for training.

The conditions are exactly the same as previously with |R| = 12 and sf = 100.
Results are presented in table 3.2. They are more mitigated than the ones observed
in 3.1: the difference between the two models is less pronounced, and seems to
be more algorithm-specific. In general, the results between the two undersampling
strategies are closer than for the first strategy, and are slightly more often in favor
of the random undersampling. However, the training on distant classes seems to
improve the results for some algorithms such as random forest, naive Bayes and
RBF SVM, showing that their might be situations in which it is worth investigating a
distance-based undersampling for an imbalanced dataset.

46 Chapter 3 Data selection and imbalanced classification

ADOM(M) = ADOM(r+) ADOM(M) = ADOM(r+ ∪ r−)
Classifier r− vs r+ r− vs sM r− vs r+ r− vs sM

Nearest Neighbors 0,70 0,72 0,68 0,71
Decision Tree 0,79 0,81 0,72 0,74

Random Forest 0,95 0,87 0,92 0,86
AdaBoost 0,75 0,78 0,70 0,73

Neural Net 0,66 0,70 0,66 0,77
Naive Bayes 0,83 0,78 0,94 0,75

RBF SVM 0,83 0,56 0,77 0,55
Linear SVM 0,99 0,99 0,99 0,99

Tab. 3.2: Accuracy of each classifier for each data generation strategy. Both models are
evaluated on the same testing set, corresponding to data from an imbalanced

datasets, with tuples from r− and Z.

3.4.4 Experimentations take-out lessons

The results of these experimentations are both encouraging and mitigated. First,
the result on a general classification approach are satisfying, and validate our initial
conjecture: it does seem easier to classify between distant set based on their FDs.
This is a very interesting experimental result, but difficult to apply in practice: given
a general classification dataset, its classes have a fixed distance, and it is not possible
to modify it to make them more distant and easier to classify.

Additionally, the application of our approach to imbalanced dataset does not seem
to bring a significant advantage compared to random sampling in our experiments.
It seems to improve the results for some specific algorithms, but in other situations
the results are not better. The few positive results might not be significant enough to
be worth going further.

3.5 Discussion on FDs and classification

From this study, one of the main lessons appears to be the gap there is between the
database constraint and the machine learning models: indeed, while models are
mainly based on the value, the satisfaction of constraints is independent of them,
and only cares about comparing the equality of two values. The choices made in
the proposed strategy therefore have a tremendous impact. We here considered
the options of using integer values, but many other would be tested: for example,
using strings would remove the notion of "order" introduced by number, and could
pose new challenges to build a predictive model. Overall, this shows the real bridge

3.5 Discussion on FDs and classification 47

there is between DB and ML, in which the data is clearly not considered from the
same angle. In this chapter, we tried to see if DB concepts could be beneficial to ML,
even though the results were mitigated. But the question of the values to consider
turns out to be the key challenge, in order to define how to generate a convincing
classification dataset.

Finally, it could be argued that on real data, the approach presented could suffer
from the lack of existence of functional dependencies in real datasets: however
this can be tackled by releasing a bit the constraint of functional dependencies.
This is a subject that has already been addressed abundantly in the literature,
especially with the concept of fuzzy functional dependencies (FFDs) [Jek+17]. It is
also reasonable to assume that as such constraints are also derived from keys and
domain’s requirements, they can be given by domain experts.

The application of this approach to real data is therefore a logical continuation of
this work, but is far from trivial and certainly raises a few combinatorial problems:
given a set of functional dependencies, how to select the tuples in the dataset such
that they satisfy those FDs, or as much as possible of them?

3.6 Conclusion and perspectives

In this chapter, we considered the data selection problem as imbalanced classification
between tuples of interest (minority class) and the other. Whereas many solutions
exists to deal with imbalanceness in classification, none of them uses constraints
such as functional dependencies to guide the undersampling strategy. We therefore
started from the following conjecture: it is easier to classify a dataset when its
classes are distant in terms of dependencies? We proposed an undersampling of the
majority class such that the the sample is as distant as possible from the minority
class. We proposed to assess these conjectures by generating synthetic datasets
based on distant closure systems.

The proposed solution was evaluated experimentally on synthetic datasets. The
first conclusion is that it does appear easier to classify on distant datasets. Second,
we evaluated the approach on imbalanced datasets, for which the results are more
mitigated.

Several leads could be exploited to go further in this study. Other generation
strategies could be designed to better mimic real classification datasets, other types
of values could be used, etc. The results of this study also open the way for

48 Chapter 3 Data selection and imbalanced classification

other research questions, as it appeared that the results can greatly vary from one
algorithm to another. One could wonder how each specific algorithm can be affected
by functional dependencies, or how functional dependencies could be integrated in
the algorithms themselves to improve their performances.

3.6.1 Towards chapter 4

The overall purpose in this chapter was to identify the relevant tuples for the
user: classification of the tuples is therefore enough, in the sense that it returns
a set of tuples that has been judged as interesting by the algorithm. However, a
complementary approach is naturaly to give a query returning the data of interest.
To this end, the method developed in this chapter should be enriched with one of
the existing methods presented in section 3.2.1 so that the classification results can
be used to produce a query.

For all these reason, in the upcoming chapter, we address the problem of writing the
query that returns the data of interest. Moreover, because the manual labeling can
be tiresome for the user, we study how this can be done without asking for manual
labeling, but rather by exploring the database until reaching the desired data.

3.6 Conclusion and perspectives 49

Data selection and
exploration in SQL for
imprecise queries

4

Chapter’s outline
The objective of this chapter is to address the problem of writing SQL queries
in a exploratory context, by helping user write their final SQL query while
exploring the database’s content: this way, they can answer their question while
gaining knowledge on the data, helping them to perform a more complete data
selection.

We present the related work in section 4.2. We then motivate the query exten-
sions with an industrial collaboration in section 4.3. The formal definition of
query extensions is then given in section 4.4, and the algorithm to compute
them in section 4.5. We then present its implementation and the related web
prototype in section 4.6. Finally, the scaling experimentation are presented
in section 4.7, and the user one in section4.8. We conclude and discuss the
perspectives of this work in section 4.9.

4.1 Introduction

4.1.1 From data selection to data exploration

The data selection problem is central, and in this chapter, we address the writing of
the SQL query that actually selects the data: this query is very useful for the user, to
both be able to understand the content of the select dataset, and to be able to reuse
the obtained results at other times or on other instances.

In chapter 3 we mentioned data selection approaches based on manual labeling of
tuples. If such solutions are valuable, as they can be efficient and allow to involve
the user in the process, they also suffer from several drawbacks. First, the manual

50

labeling can soon be tiring and tedious for the user: it is therefore necessary to ask
a limited number of labeling to keep the user involved in the data selection task.
Moreover, such a labeling is subject to the own biases of the user, that might make
assumptions on the tuples she is looking for, therefore missing other that could yet
be of interest to her. In such cases, it is interesting to help the user to go beyond
her prejudice, by exploring other elements of the database that might be relevant
for her task. This is why it is often necessary to combine data selection with data
exploration [Idr+15], in order to make sure all the elements offered by the database
have been considered before making the final data selection. It is also important
to propose data exploration tools to assist user that don’t really know what they
are looking for, and that are having troubles to start their data selection process,
because they are not aware of what they can obtain from the database, or just have
a rough idea of what data is interesting without knowing how to get it.

4.1.2 Exploration of relational databases

Combining data selection with data exploration is getting more and more mandatory,
because of several factors impacting relational databases, making it more and more
difficult to define and fine what the user is looking for.

First, data selection is complicated by the size of databases that keeps increasing
continuously, as the volume of data stored is doubling in size every two years (and
should reach 44 zettabytes (1021) in 2020). As a result, relational databases are also
getting bigger, with more tuples, more columns, more tables, etc. In these conditions,
identifying the required data is getting more complicated than ever. Nowadays, it is
not unusual to see databases with several hundred of tables, some of them having
several hundreds of attributes. For instance, the database used by the LSST1 (Large
Synoptic Survey Telescope) contains tables with hundreds of attributes (table Objects
has 229 attributes for example), and a look at it is convincing to see that writing
queries on such schemas is not trivial.

In addition, because of the deluge of data, there is sometimes less time spent on
the definition if the schema: the table and columns might therefore not be very
informative or meaningful of their contents, making it harder to locate the desired
information. This is even more difficult if the naming is not consistent in the
database, a problem that is gaining more importance as the data often come form
several different sources [SI18].

1http://lsst-web.ncsa.illinois.edu/schema/index.php

4.1 Introduction 51

http://lsst-web.ncsa.illinois.edu/schema/index.php

Another factor explaining the need for assistance in query writing is the profile of
users accessing the databases. Indeed, more and more people are in contact with
data and databases: SQL and relational databases are widely used to store and
access datasets in most commercial data management systems. For example, data
scientists often use SQL to fetch and explore data. Many companies, as well as many
scientific applications, such as chemical research, pharmaceutical applications, and
astronomy research, rely on the declarative nature of SQL to explore these massive
datasets, to find insights or to select subsets to feed into their models. This rush on
data happens mostly because the data they are trying to access has a potential value
they can exploit: typically, they can use such data to train classification algorithms in
order to better predict some business factors. This is exactly the scenario considered
in this thesis, that requires to be able to define what the users need, and what is
the query that can retrieve it. They therefore have to explore the data in order to
understand it, and to determine what is useful for their applications.

Data exploration tools are therefore crucial as they help users to go to interesting
regions of their dataspace, and to identify relevant information or patterns in the
data, as argued in [HV18]. There is a real need for exploration systems that can
assist the discovery of relevant data, as well as the writing of the queries returning
the tuples of interest.

4.1.3 Imprecise relational queries

The purpose of data selection and exploration is to allow users to better understand
and reach the data that is required to answer their considered problems. This
step is difficult, because it requires to transform a problem, usually expressed with
several sentences in natural language, to a single SQL query, which is a constrained
language, that is supposed to identify all the necessary tuples. This is especially
true for the selection conditions (in the where clause of the SQL query), that are
a form of characterization of the anwser set of the query: the tuples should be
lower than a value on a attribute, but above another one on another attribute, etc.
Such conditions can be hard to come up with, especially because usually, they are
first given in natural language, making them vague and imprecise. Indeed, the
analyst might first think of the necessary conditions in term of adjectives, such
as low, bigger than average, surprisingly high, etc, that are at first impossible to
translate into exact numerical conditions. This is even more complicated if the
analyst is not familiar with the database, as such description can have very different
translations depending on the database’s content and the distribution of the values
for the different attributes.

52 Chapter 4 Data selection and exploration in SQL for imprecise queries

In this chapter, we are therefore interested in assisting user that have to translate
such queries that are defined in natural language, but difficult to translate into
precise selection conditions for a SQL query. We call such queries imprecise queries:
this problem is recurrent when performing data selection, because it is the bridge
between what the user has in mind, and the query that allows to allow the relevant
data. Such a problem is a clear example of how finding the relevant SQL query is a
combination of query inference and data exploration: the purpose is to make the
user more knowledgeable of the database’s content, so that she is able to write the
most appropriate query for her problem.

To address imprecise queries in a traditional database setting, an analyst usually
has to start with a general query, and to try and refine it until reaching the desired
output. This iterative process can be tiresome and require many iterations, as the
analyst can be overwhelmed with the initial results, and not know what direction to
take. Indeed, the initial query is likely to be too general and to return many tuples.
The analyst therefore has to find a way to understand it, in order to to be able,
afterwards, to eventually modify the query. Sometimes, this is even harder because
the analyst has no control of the initial query, for example if the data is managed
externally, so she only has access to a CSV file containing results she has not been
able to initially select.

The analyst then compares the results she obtains against her expectations: if they
are not reached, the original query needs to be revised. This modification step can
be hard, as the analyst has to understand how the given results differ from the
expected one. And once the source of the difference is identified, the problem is to
find how to modify the initial query to correct it.

One solution to reduce the query’s output size is to add more selection predicates
to the query, to filter some tuples out. Data analysts often adopt a trial and error
approach: they try different combinations of attributes and thresholds for a selection
predicate, and adapt and modify it according to the result they obtain. The question
of queries returning too many tuples has already been addressed in other research
papers, offering various solutions. The interactive query refinement solution exposed
in [MK09] addresses the too many tuples problem by transforming the selection
predicates of a query with respect to a cardinality objective. The STOP AFTER
SQL operator proposed in [CK97] is also a solution to this problem. Finally, top-k
approaches are also available [Fag+03].

In this chapter, our objective is to propose a solution that refines the initial query
given by the user so that it returns less tuples, by suggesting additional selection
clause for the considered query that assist users with imprecise queries. The objective

4.1 Introduction 53

is to turn the imprecise query into SQL progressively by identifying interesting
selection conditions that, one by one, refine the initial query until reaching the
desired result set. The proposed solution should be based on SQL so that users can
stay in a familiar setting, ans so that it is easily integrable in any DBMS.

4.1.4 Query extensions

To summarize, it appears that to assist users in writing imprecise query, the main
objective is to propose a guided refinement process to take them from a very general
query to the one they actually need. This process has too main objectives:

Refine the query In the case of data selection and imprecise queries, this means
suggesting additional selection predicates that can catch the imprecise needs
of the user, and that can be added to the current query so that it returns more
tuples. This is related to the query writing part of the problem.

Better understand the results It is necessary to help the user better understand
the database’s content, so that she can make an informed choice when choosing
an additional selection predicate.

Based on these two objectives, in this chapter, we propose, for each refinement
step, to summarize the current query by describing its results set using a group of
selection predicates that each describe a part of this result set. This helps the user
to better understand the current query. Additionally, she can then choose one of
these selection predicates to refine her current query, therefore moving to the next
refinement step. As a results, for a given query we introduce its query extensions:
it consists in a set of different selection predicates. The role of these extensions
is to provide options to refine the initial query and, when considered together, to
understand how the initial query’s results can be divided, and therefore what are
the different groups of data it consists in.

Using such query extensions, a user can start by writing a query that contains all the
knowledge she has about the data she is looking for: if she does not know anything,
she can start with a query returning all attributes from all tables. The extensions
can then help her to refine her query until she reaches her data of interest. More
specifically, given an initial SQL query Q, we propose to a data analyst a list of SQL
queries, that addresses two sides of the problem. First, the queries are extension of
Q: the beginning of each query is the same, and equal to Q. Then each query has
its own set of additional selection predicates, so that each query returns a smaller
subset of tuples. Moreover, the extension’s results form a partition of Q’s results:

54 Chapter 4 Data selection and exploration in SQL for imprecise queries

EmpID LastName Gender Salary Commission
e10 SPEN F 41160 1300
e20 THOMP M 41250 7400
e30 KWAN F 39850 5200
e40 SMITH F 40525 1400
e50 GEYER M 40175 1100
e60 STERN M 39560 6200
e70 PULASKI F 40120 800
e80 FREY M 40625 6600
e90 HENDER F 39450 6700
e100 SPEN M 41560 900

Tab. 4.1: Result set of query Q

each extension summarize part of Q, helping the user in understanding what lies
into the initial bigger result set.

Example 7. Assume that Alice, a data analyst, has access to the database of a company,
which contains several tables, among which the Finance and HR tables (with a join
attribute EmpID). She is asked to find the gender of employees with a low income: this
is typically an imprecise question. Not knowing how to translate the notion of "low"
into SQL, and only knowing the existence of a salary attribute in the database, she
starts with the following query:

S e l e c t * From Finance , HR
Where Finance . EmpID = HR. EmpID

She hoped to be able to refine this first query query by looking at the results it returned.
We propose a subset of such results in table 4.1, but the full results (several hundreds of
tuples) make it hard for Alice to assess what a good threshold would be to get only low
salaries. With the solution proposed in this paper, Alice could get help from the three
following extensions of her initial query:

S e l e c t * From Finance , HR
Where Finance . EmpID = HR. EmpID

and commission ≥ 6200
Extension 1 (4 tuples)

S e l e c t * From Finance , HR
Where Finance . EmpID = HR. EmpID

and commission < 6200
and sex = ’ F ’

Extension 2 (4 tuples)

4.1 Introduction 55

S e l e c t * From Finance , HR
Where Finance . EmpID = HR. EmpID

and commission < 6200
and sex 6= ’ F ’

Extension 3 (2 tuples)

These extensions contain several pieces of information that can be valuable for Alice.
First, they summarize the tuples that were returned by her first query, as they are
divided into three queries, and described by the additional selection predicates of these
extensions of Q. It gives her directly a selection condition based on the commission
attribute, which is part of an employee’s income. it shows Alice an attributes she had
not considered at first, but that is relevant for her question. Moreover she now has a
numerical threshold to start from. Finally, the gender selection predicate can also draw
her attention to a discrimination she had not considered. Therefore, those extensions
are a way to highlight information and patterns that could be pertinent for Alice, and
to help her find numerical threshold that can be hard to come up with.

4.1.5 Problem statement

Because the extensions should summarize and refine the considered query at the
same time, we propose the following problem statement: given a query Q, and a
number of extensions n, return n extensions of Q such that:

1. The results of the extensions are a partition of those of Q.

2. Each extension consists in query Q and one or several additional predicate.

3. Each predicate is on one attribute from the Select clause of Q.

Based on such a definition, the problem is then to be able to compute such extensions,
so that they can be useful for query writing when the question is imprecise. As a
result, the general question of this chapter can be summarized as follows:

How can we complete a set of extensions that are informative and help
the user refine her initial query to select the tuples of interest?

It is thus necessary to propose a solution to address this question, and to evaluate
how well it is answered. The contributions of this chapter are therefore as follows:

• Present a concrete industrial problem in which query extensions can be useful

56 Chapter 4 Data selection and exploration in SQL for imprecise queries

• A formal definition of the set of query extensions for a given query

• Given a database, a query and the number of desired extensions, an algorithm
to compute such extensions that does not require any laborious user input;

• Visualizations to assist the extension selection;

• An implementation of the algorithm with the design of a web application that
can be used by users to test the query extension solution;

• Experimentations on the scaling of our algorithms so that extensions can be
obtained in a reasonable amount of time.

• User experimentations to validate whether or not extensions are helpful to
answer imprecise queries on a relational database.

4.2 Related work

Over the last decades, and because of the new usage and shapes of relational
databases, there has been a growing solution for exploratory solutions in the
database community. First, all the works mentioned in section 3.2.1 are also so-
lutions that can be seen as exploratory solutions: by helping the user to write her
query and by presenting tuples to label, these solutions are a way for the user to be
confronted to part of the database’s content while getting a query returning tuples of
interest. However, all these methods rely, in some way, on a form on tuple labeling.
We will now cover other solutions for assisting query writing, and present other
approaches more oriented toward data exploration.

When it comes to query writing, there has recently been a growing interest for
methods relying on natural language processing (NLP). The idea is simple but very
promising: the user only has to specify her query using natural language, and it
is transformed into a SQL query. An overview of such methods can be found in
[Aff+19]. Among these solutions, some are keyword-based, that use an index to
associate words from the natural language to the database’s schema: we can mention
for example the soda system (Search over Data Warehouse) [Blu+12], that enable
"Google-like experience" to generate a valid SQL query. SQLSUGG [Fan+11] is an
alternative that suggest several SQL queries based on users keywords. In [ZP09],
the authors offer to extend keyword-search to find minimal group-by queries that fit
the user’s search, in order to aggregate several tuples. In [Yu+07], the problem of
keyword search is extended to ditributed databases.

4.2 Related work 57

But keywords are limited in the interpretation they have of the initial sentence, as
they do not analyze its structure nor grammar. For this reason, new solutions have
been proposed to capture more complex patterns: ATHENA [Sah+16] proposes
an ontology-based approach to take the phrasing of the query into account, while
NaLIR [LJ14] builds a parser to formulate complex SQL queries. The most recent
approaches have taken an interest on recurrent neural networks, that show very
good performances on the parsing on natural sentences [DL16; JL16; Uta+18] such
approaches are very efficient, and do not require too make many domain-specific
assumptions to build the model.

These natural language approaches are very interesting, because the user does not
need much SQL knowledge, and does not need to no too much about the database’s
schema. However, it means that she might have trouble to say if the returned query
is really the one she is looking for. Additionally, such systems "only" translate the
natural language query to a SQL one: this means that the query will be limited
by the knowledge of the user, that will only ask for what she knows of. For this
reason, more exploratory solutions are interesting the attract the user’s to regions of
the database he might have overlooked, and to complete the initial results she was
searching for.

More exploratory solutions include visualizations, a very useful tool when it comes
to exploring a dataset. Solutions have been specifically designed for relational
databases, as advocated in [Wu+14] that underlines the need for integrated visu-
alization systems in relational databases. For example, Polaris [Sto+08] designs a
visual query language, that aims at combining traditional SQL with drawing com-
mands, to assist user in the exploration of their database. However, producing
visualizations when the result set is huge can cause scaling issues and produce
visualizations that are too big to ba valuable: for this reason, ScalaR [Bat+13]
offers a dynamic solution to efficiently select a subset of tuples that are relevant for
visualizations. Another example of visual solutions is SeeDB, that explores a set of
interesting and useful visualization related to the considered query [Par+13]. The
dbTouch system [IL13] represents the data visually with different shapes, that are
used to interact with the user: instead of writing a SQL query, she can interactively
refine her results and adjust the obtained tuples. The purpose of all these solutions
is to help the user explore her database, by giving her tools that are more intuitive
than SQL: in [Nan+13], the authors propose to let the user interact with different
gestures that are filmed and interpreted, rather than having to use a keyboard.

However, there also exists other exploration that do not rely as much on visualization,
but rather use SQL and the data itself to help the user better understand the data,

58 Chapter 4 Data selection and exploration in SQL for imprecise queries

and get interesting suggestion of where to look next. Among these systems, one
family of solutions is faceted search and exploration [Kas+10], that allow a user
to explore and narrow her results with facets conditions that work as restrictions
on attribute values: for example FleXplorer [Tzi+08] proposes a framework for
faceted search, that can be used for relational databases. An other solution,YMALDB
[DP13], offers to explore databases by recomanding "you may also like" results, that
where not part of the user’s initial query. Theses additional items are computed by
identifying interesting sets of attributes and values (facets), and really allow the
user to explore beyond her initial intended results.

All the aforementioned solutions try to relieve the user from having to use SQL for
their exploratory processes, by providing complementary solutions. However, other
solutions have been proposed that rely more on SQL, but try to make it easier to
write SQL queries, while suggesting some exploration solutions, and without relying
on example tuples. DataPlay [Abo+12] is an example of such systems, that rely
partly on visualizations, and encourages the user to look at the result of her query,
but also at tuples that are not returned by it, to better understand the tuples, and
better refine the considered query. Alternatively, [QR14] offers to help users refine
their imprecise queries by using a probability-based framework.

4.3 Industrial motivation

In addition to all the elements exposed in the introduction of this chapter, this work
on query extensions was also motivated by several observations made during an
industrial collaboration with Dodin Campenon Bernard (Vinci). It indeed clearly
appears that the use that is made of relational databases on a daily basis by some
companies, is quite distant from the intended ones from database designers. This
considerations were presented at the BDA2017 conference [LG+17].

4.3.1 Context

This considered industrial collaboration involved a civil engineering company, and
more specifically its branch dedicated to tunnel boring machines. They are gigantic
machines, with a diameter up to 9 meters, and 100m long: an example of such a
machine is shown on figure 4.1. They are extremely costly, as well as delicate to
maneuver: for these reasons, they are equipped with thousands of sensors, used to
guide the machine, monitor the boring, drive the excavation or rocks, etc.

4.3 Industrial motivation 59

Fig. 4.1: Picture of a tunnel boring machine

Thanks to all these sensors (more than 1200), a lot of data is recorded on the boring
machine. They are used to give indications to the machine’s driver, as well as to
domain experts that can remotely monitor the process, and raise alerts if something
odd is detected. The data is usually kept "row", in the sense that only domain
expert with acquired knowledge are able to process it based on their experience:
it is therefore harder to formalize and convey such knowledge. This data was
therefore mainly used for monitoring, limited to specific patterns identified manually
by domain experts.

The purpose of the collaboration with this company was therefore to see if this vast
quantity of data would be exploited to propose new usage that could go beyond the
monitoring tools that were then in place. We focused on the prediction of a value
that is measured regularly on the route of the boring machine. Due to confidentiality
reasons, the exact purpose of the prediction task cannot be given: we will therefore
called the variable to predict var1 in the rest of this section.

4.3.2 Database’s description

The first step to build a predictive model for var1 was to list all the available data
sources that existed and that could be used to retrieve valuable features for the
model, in order to build a classification dataset. It soon appeared that there were
many different ones: files in a proprietary format, pdf files containing instructions

60 Chapter 4 Data selection and exploration in SQL for imprecise queries

for the machine’s pilot, textual description of the soil, snapshots of internal reports
about the progress of the boring and, finally, the dump of a relational database with
the records of the machine’s sensors. For obvious reasons, all these data sources
could not be exploited easily: we therefore decided to focus on the database, as it
was supposed to contain all the necessary information for the prediction of var1,
especially, the data from the 1250 sensors.

The data from the 1250 sensors had been stored in a single table, therefore contain-
ing 1250 columns: the table was simply a dump for the files in the proprietary format
generated by the boring machine. This structure was puzzling, as that applying a
simple SQL query on it would be a more difficult task than anticipated. But the
trickiest problem came from the name of these columns: it started from DATA0001,
DATA0002, ... all the way until DATA1250: these names were therefore completely
useless to understand the content of each column, making it almost impossible
to identify the column of interest for the construction of the classification dataset.
Additionally, there was no constraint specified for the database, therefore no primary
or candidate key, making it difficult to join the sensor data to two other tables, such
that the one containing the values for var1.

In these conditions, querying the database was almost impossible, because identify-
ing the relevant data in could not be done using the column names. According to
the domain experts of the company, 93 attributes add been identified as important
for the prediction of var1. The sensor table of the database had to be entirely rebuilt
from the files generated by the boring machine. Thanks to the experts knowledge,
the 93 attributes were directly identified in the files, making it possible to only use
the sensors of interest. In the end, it was therefore possible to build a classification
dataset. But it is important to underline that the techniques employed to make
the database exploitable were extremely time consuming, because they required
many back-and-forth exchanges with the company. Moreover, this showed that their
was no chance for this database to be useful for the company, because the design
choices made it impossible to use the data from the most important table. They were
therefore loosing a lot of potential value by not being able to easily query their data
using all the powerful tools of DBMS and SQL.

4.3.3 Take-out lessons

If the initial goal of the study was focused on the development of a classification
model, one of the most important lessons of this study was the importance of the
quality of the relational database from which the classification dataset is extracted.

4.3 Industrial motivation 61

In this specific industrial context, the database was just a dump of the available
datafiles, but its design made it impossible to query the data efficiently, therefore
depriving the company from valuable possibilities: during the collaboration, much
more time was spent on the data selection than on the classification. It is also a
vicious circle: because the database is not practical to query, it is not used to its full
potential, and there is therefore no effort made to improve it.

In such a context, the ideal solution would of course be to completely redesign the
database, to make it more compliant with the standard practices, and therefore more
easily usable. But, for many reasons, this is not simple to do for many companies.
First, because there are ways to more or less bypass the problems, it might not be a
priority for the company. In addition, it requires time and effort, as well as human
resources that are not necessary available: it might require to hire someone, or to
pay to externalize the process, which is costly. Moreover, changing the database’s
design is likely to impact other upstream and downstream applications, because
they rely on the current design: as a result, this means changing much more than a
schema, and the impact on the company’s processes can be huge.

In this setting, it appears that from the company point of view, the ideal solution
would keep the same database structure, but the DBMS would provide tools that
would make it easier to query the data even with such ill-specified tables. If such
tools are integrated in the DBMS, it does not change much from the company’s side,
but is develop new querying possibilities.

4.4 Query extensions definition

Let’s consider an initial query Q, for which query extensions have to be defined. The
first characteristics of these extensions is that they aim at refining the initial query
Q. Hence, an extension Qext of Q should diminish the size of the result set. We
therefore propose the following definition:

Definition 7. An extension Qext of Q is defined by:

Qext = σc1∧...∧cn(Q)

where ci is an atomic formula, for every i ∈ 1..n

The following property therefore follows:

62 Chapter 4 Data selection and exploration in SQL for imprecise queries

Property 5. If Qext is an extension of a query Q then:

ans(Qext, d) ⊆ ans(Q, d).

The second objective of these extensions is to summarize the result of the initial
query Q: as one extension will only contain part of the result of Q, it is necessary
to propose a set of different extensions, to make sure all of ans(Q, d) is contained
in one of the extensions. Therefore, we define the notion of a k-extensions set,
containing k extensions of a query Q such that:

• The union of the results of extensions in the set of size k is equal to the set of
tuples from the initial query: this way, the initial query is fully represented in
the extensions.

• Each extension returns tuples that are not returned by any of the other ex-
tensions: this way the options offered to the user are very different from one
another, giving us a wide variety of options to choose from.

More formally:

Definition 8. A k-extensions set of Q over d, denoted by CQ, is defined as: Cq =
{Q1, Q2, ..., Qk} such that:

• Qi is an extension of Q, for all i ∈ 1..k

• ans(Qi, d) ∩ ans(Qj , d) = ∅, , for all i, j ∈ 1..k, i 6= j

•
k⋃

i=1
ans(Qi, d) = ans(Q, d)

Clearly, a k-extensions set forms a partition of ans(Q, d). An example of a 3-
extensions set is given in example 7. Being able to parameter the number of
extensions for the considered query give more freedom to the user, who can explore
with different size of extensions sets, and eventually use her domain knowledge to
fix the most appropriate size. We will therefore see in the following section how
such sets can be computed, in order to provide useful extensions to users.

4.4 Query extensions definition 63

4.5 Solution

4.5.1 General approach

Based on definition 8, it clearly appears that an extension set is a partition of the
results of the initial query, where each subset has to be described by a set of selection
predicates. Given a query, there exists many different possible partitionings: as
a result, it is necessary to decide which one to choose to present to the user, so
that it is as useful as possible, taking into account the exploratory context. Given
definition 8, there is a first indication of which possible partition to select: as the
number of subset k to compute is given in the definition, it therefore removes a
vast number of candidate partition. However, it still leaves many possible partitions:
the definitions itself is therefore not enough, it is necessary to design a strategy to
compute an extension set, that is a coherent as possible with the intended used of
such extensions: in this setting, the solution used to compute the extensions has
therefore a huge impact on the result presented to the user, and is a key element of
the data exploration strategy proposed to assist the user in query writing.

In addition to deciding which partition of the results to use, it is also important to
keep in mind that for each subset option through partitioning, it will be necessary
to define the selection predicates returning such a subset of tuples. Given an initial
query Q and the number k of extensions, we have to:

• First, divide ans(Q, d) in k disjoint subsets: this is not trivial, and requires to
define the division strategy. This first part is related to partioning, as well as to
clustering in machine learning [Jai08].

• Then, for each subset, find a query returning all of its tuples, that is an
extensions of Q with respect to definition 7. It should be as short as possible
to reduce the user’s effort, and to help him easily understand the description
of the tuples contained in the considered extension. It should also be as
informative as possible, explaining how the considered extension is different
from the others. This problem is very similar to query reverse engineering
[Tra+14] or redesciption mining [PR05].

Example 8. Figure 4.2 illustrates the extensions set computation process: given the
results of an initial query Q (the outer envelop), the tuples are partioned into several
subsets. Then, for each subset, an extensions of Q is defined returning the tuples of the
subset.

64 Chapter 4 Data selection and exploration in SQL for imprecise queries

ans(Q, d)

k = 5

Q1

Q2

Q3

Q4

Q5

Fig. 4.2: Illustration of the query extensions computation process for a 5-extensions set:
partition the initial results, and find an extension for each of them

4.5.2 Partitioning of the initial set of tuples

Using clustering

Let’s first consider the partitioning of the initial set of tuples ans(Q, d): the partitions
should have a sense for the user, and return tuples that are meaningful with respect
to the exploration process. As a result, we propose to identify tuples that make
sense together, and that identify regions of ans(Q, d) that share some common
characteristics. These regions are more likely to be of interest because they are
more likely to correspond to the need of the user, who is usually not looking for sets
or random tuples. In addition, these common characteristics are likely to help the
formulation of the selection predicates for the extensions, as they can rely on these
common characteristics of the tuples.

As a consequence, we propose to divide ans(Q, d) by grouping together similar
tuples. More specifically, we propose to divide the initial set of tuples using a
clustering algorithm (see [Han05] for an overview), as it corresponds to all of our
requirements: The clustering algorithm will group close or similar tuples together;
Clusters are pairwise distinct, so the sets will not overlap; and the clusters cover
ans(Q, d). Regardless of the initial query Q, the answer set of the query will always
be a unique table, that can then directly be sent to the clustering algorithm, along
with k, which directly corresponds to the number of clusters to be produced.

4.5 Solution 65

Challenges of clustering

Clustering is one solution to address the considered problems, but it yields intrinsic
challenges that we ought to address. The main issues is that because we propose a
general approach that should be applied to many different databases and queries, the
data to cluster is initially unknown: it is therefore necessary to take some precautions.
First, it is important to normalize the data to cluster, to avoid the features with
higher values to take more importance than the other. We also have to make the
assumption that the number of features stays reasonable: indeed, clustering can
then be less significant, due to the curse of dimensionality [Fri97]. Finally, most
clustering algorithms require to be able to define the distance between two tuples,
which can be more or less easy depending on the feature’s types. From all of this, it
is clear that clustering has to be manipulated carrefully: in our setting, it however
provides an efficient solution to group together similar tuples, that are more likely
to have interest for the user.

It is also necessary to choose the specific clustering algorithm. Given the input
dataset, a clustering algorithm groups together tuples that are close to one another,
which requires to have some sort of distance between tuples. If this is straightfor-
ward for numerical values, with for example the well-known euclidean distance, a
database if likely to contain different data-types: therefore our solutions requires a
clustering algorithm that is able to handle mixed datatypes.

Addtionally, one key element in choosing the clustering algorithm is that the number
of clusters to be produced in known: in our extension setting, we consider this
parameter to be given by the user with respect to her exploration requirements: this
therefore allows her to explore different extensions possibilities with different values
for this parameter.

Considering all these parameters, we propose to compute the k sets of tuples using
the k-means clustering algorithm [Llo06], that can take the number of clusters to
produce as an input: this solution was also used in [SK16] to propose visual data
exploration of query results. Moreover, to handle both numerical and categorical
attributes, we propose to use its variant k-modes [Hua98].

Moreover, as the user might not always know the size of the extensions set she
desires, we offer to automatically try different ones: she can therefore specify an
lower and upper bound (by default for k = 2 to k = 10), so that different values of
k can be tested, and therefore several extensions sets proposed. As among all the
computed ones, some extensions sets might be more pertinent than other, they are
ranked according the clustering quality, based on the well-known clustering score

66 Chapter 4 Data selection and exploration in SQL for imprecise queries

of the silhouette coefficient [Rou87]: let’s consider a tuple i assigned to cluster Ci.
Then we define:

• a(i) = 1
|Ci|−1

∑
j∈Ci,i 6=j d(i, j)

• b(i) = mink 6=i
1
|Ck|

∑
j∈Ck

d(i, j)

The silhouette score for i is then defined as:

s(i) = b(i)−a(i)
max{a(i),b(i)}

Considering all the tuples that have been clustered, the silhouette coefficient is
defined as:

Ssil = 1
K

∑K
k=1

1
|Ik|

∑
i∈Ik

s(i)

Intuitively, it is the average of how close the points in the same cluster are, and how
far they are from he others cluster: the better the clustering, the more separated the
clusters.

Preparation for extensions construction

After the clustering, each tuple can be assigned to a single cluster, that can be added
as an additional attribute to ans(Q, d). This cluster column acts as a form of tuple
labeling, indicating which tuples are likely to form an interesting subset, because they
share some common characteristics. Compared to other existing labeling techniques,
this clustering-based approach has several advantages. First, it drastically simplifies
the role of the user, who does not have to endure the boring task of manual labeling.
Additionally, this solution goes beyong the simple binary labeling that is usually
used: instead of just considering a tuple as interesting or not, it says whether or
not it is interesting to consider it with other tuples or not. This way, instead of
evaluating individually the relevance of a tuple, this allows to consider groups of
tuples that might be relevant for a given task, together. In practice, a new attribute,
called cluster, is added to the schema of the query to keep track of the cluster
corresponding to each tuple.

Example 9. Table 4.2 presents tuples from table 4.1, with the additional attribute
cluster that is the cluster tuples have been assigned to, for a 3-extensions set.

4.5 Solution 67

EmpID LastName Sex Salary Commission Cluster
e10 SPEN F 41160 1300 2
e20 THOMP M 41250 7400 1
e30 KWAN F 39850 5200 2
e40 SMITH F 40525 1400 2
e50 GEYER M 40175 1100 3
e60 STERN M 39560 6200 1
e70 PULASKI F 40120 800 2
e80 FREY M 40625 6600 1
e90 HENDER F 39450 6700 1

e100 SPEN M 41560 900 3

Tab. 4.2: Tuples from table 4.1 labelled by clustering (k = 3)

4.5.3 Construction of extensions for each subset of tuples

Using a binary decision tree

The second part of the process aims at finding, for each cluster, a set of selection
predicates that can describe it. Once again, in an exploration setting, there are some
specific considerations to take into account: there is a trade-off to find between the
accuracy of the clusters description, and the utility of the extensions. Indeed, they
should be concise enough, so that the user can understand the data they describe
quickly, and as informative as possible, in order to underline what separated a
specific cluster from the others.

Taking this constraints into consideration, we propose to use a decision tree to
construct the query extensions, using the tuples as a classification dataset, and the
cluster column as the class to predict. The general idea is to learn what distinguishes
a cluster from another: the decision tree will identify relevant attributes and dis-
criminating values to describe concisely a cluster with respect to the other ones.
Each leaf of the tree can then be considered as an extension, by using the selection
conditions that lead to it from the root of the tree.

Using decision trees to generate SQL queries is a technique that has already been
exploited [Cum+17]. To be able to reach the objectives defined for our SQL
extensions, we follow the same path but with binary decision trees (BDT) [Bre+84],
which is a tree splitting at each node on exactly two opposite conditions.

One specificity of our approach is the fixed number of extensions to be computed:
we need exactly k extensions. For the clustering, this meant computing k clusters:

68 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.3: Construction of a binary decision tree given a fixed number of leaves

however, the decision tree might produce more leaves than classes: if we want to
produce exactly k extensions, two solutions are considered:

• As they are k classes, it is possible, for each class, to consider all the leaves of
the tree that correspond to it: the different conjunction of selection conditions
leading to each leaf can then be disjoined, to give only one selection predicate
for the considered class. In this case, the produced extensions might be longer
and less easy to understand directly because of disjunctions and conjunctions,
but maybe also more informative.

• The other possibility is to limit the growth of the tree, to only allow it to have
k leaves: by considering each leaf as an extension, k extensions are therefore
obtained. In this case the extensions might be shorter and easier to understand,
but also less discriminating.

We therefore propose to let the two possibilities, and to let the user decide which
strategy he wants to use. For the second one, it requires to be able to produce a
decision tree with a constrained number of leaves, a problem we address in the
following section.

Obtaining a constrained BDT with k leaves from a given data partition

Constrained generation of BDT given a specific number of leaves has been studied in
[Wu+16]. In our case, we just need to explore levelwise the search space (breadth-
first search) and stop as soon as the number of leaves exceeds k. To do so, we rely
on the following property of BDT: if N is the number of classes to classify, the depth
of the BDT is bounded between dlog2(N)e and N − 1. Both bounds are attainable:

4.5 Solution 69

Commission ≥ 6200?

Extension 1 Gender="F"?

Extension 2 Extension 3

yes no

yes no

Fig. 4.4: Binary decision tree from Table 1

the first one with a full binary tree and the second one with a right deep tree. For the
query extensions, it requires to stop somewhere in-between.

To reach exactly the k leaves constraint, the construction of the tree starts as usual,
level by level. At each new level, there are then three possible scenarios:

• The total number of leaves in the tree is inferior to k: then the construction of
the tree can continue.

• The total number of leaves in the tree is equal to k: then it is perfect, the
process should stop there.

• The total number of leaves in the tree is greater than k: it means the last level
has added to many leaves, and some should be removed.

To figure out how to deal with the last scenario, and how to remove leaves from the
tree, let’s consider figure 4.3: assume the number of leaves in the BDT is less than k
at level i− 1, and greater than k at level i. The process to remove the unnecessary
leaves works as follows: while the number of leaves remains greater than k, replace
two leaves at level i from the same parent by turning this parent into a leaf at level
i − 1 (using a majority vote to assign a class to this new leaf). As two leaves are
replaced by one, this process removes the leaves one by one, until the total number
of leaves in the tree is equal to k.

Example 10. From the clustering in table 4.2, the binary decision tree of figure 4.4
can be obtained. In this running example, the decision tree leaves match exactly with
the clusters.

The example points out that the clustering and the binary decision tree may coincide.
However, this is not always true since some tuples may fall into the wrong cluster
or some clusters could be lost by the binary decision tree because, as previously
explained, we do not grow a full tree and limit the number of leaves. It is possible

70 Chapter 4 Data selection and exploration in SQL for imprecise queries

to obtain a correspondence between clustering and decision tree by using our
alternative strategy, which allows to make disjunctions and therefore to fully grow
the tree.

Obtaining SQL statements from a BDT with k leaves

Once the binary tree has been constructed, each leaf can be reached through a
unique decision path. The decision path from the root of the tree to a specific leaf
can be written as the conjunction of each decision encountered along the road. It is
therefore straightforward to go from a decision tree to a SQL query. After exploring
all the path in the tree, each conjunction can be directly injected in the where clause
of a SQL query, and gives a new extension.

Example 11. From the decision tree on figure 4.4, every extension from example 7 can
be obtained easily.

4.5.4 Algorithm proposal

In order to combine all the steps described previously, and to specify how the k-
extensions set of a given query is to be computed, algorithm 3 is proposed hereafter.
It takes a query Q and a database d as an input. In addition, it takes also an lower
and upper bound for the size of the extensions, and allows to select the strategy
for the decision tree: by default (when treestrategy = false), the extensions only
contain conjunctions, and the number of leaves in the tree is therefore limited. It
works as follows:

• The algorithm is centered around function Extend, that computes an extension
set for a given query on a database, given the number of extensions to compute
and the selected strategy for the tree:

– Line 12, we compute the result of the initial query. Clearly, if the size of
the result is expected to be large, the online computation of extensions
might take some time, and sampling could speed it up. Details on scaling
and sampling are discussed in section 4.7.

– Line 13, the clustering transforms the dataset wd into a labelled dataset
lwd in which each tuple is labelled with the cluster it was assigned to.
The quality of the clustering is evaluated line 14.

4.5 Solution 71

– The decision tree is then built from lines 15 to 21, depending on the
selected strategy. The conditions are extracted from the tree.

– The conditions are sorted by length. They are then turned into extensions,
and stored.

– Finally, the considered k − extensions set is returned along with the
corresponding clustering quality.

• The main algorithm (lines 2-10) computes the extensions sets for the different
values of k. The different extensions sets are ordered according to the quality
of their clustering.

Thanks to the parameters of the algorithm, the user can have more influence on
the extensions. However, the default parameters are already a good start for a
novice user. This flexibility makes the extensions useful for different user profiles
and different kind of data selection tasks.

The conditions from definition 8 are satisfied by the proposed algorithm as stated in
the following property.

Property 6. Let d a database overR,Q a query overR, and k an integer. extension(Q, d, k)
is a k-extensions set of Q, i.e for {Q1, Q2, ...Qk} in Extend(Q, d, k), and for all
i, j ∈ 1..k, i 6= j:

Qi is an extension of Q (4.1)

ans(Qi, d) ∩ ans(Qj , d) = ∅ (4.2)

k⋃
i=1

ans(Qi, d) = ans(Q, d) (4.3)

Proof. (1) By construction, and with respect to definition 7, Qi is an extension of Q

(2) At each node of the binary decision tree, there is one split leading to the creation
of two child nodes. This split is done on one attribute A, for one threshold value t
if A is numeric or a value v otherwise. The first child node takes all tuples in the
dataset for which A ≤ t (respectively A = v), the second child node takes the rest,
i.e tuples for which A > t (respectively A 6= v)2. As a consequence, any tuple in the

2In case of null values on A, one of the two conditions of a split should integrate a test of the form A
IS NULL, not to miss any tuple.

72 Chapter 4 Data selection and exploration in SQL for imprecise queries

Algorithm 3: Query extensions sets configuration procedure

1 procedure Extension (Q, d, kmin = 2, kmax = 10, tree_strategy = false);
Input :A query Q over R,

d a database over R,
kmin the lower bound of query extensions set,
kmax the upper bound of query extensions set,
tree_strategy the strategy for the decision tree (true if it is different

from default one)
Output :ext_list a list of k extensions sets of Q, with sizes from kmin to kmax

2 ext_list = [] // the final list of extensions sets
3 scores = [] // list of clustering quality for each extensions set
4 for i = kmin; i ≤ kmax; i+ + do
5 Sc, quality = Extend(Q, d, i, tree_strategy)
6 ext_list.append(Sc)
7 scores.append(quality)
8 end
9 ext_list = sort(ext_list, scores); // sort the extensions sets by

silhouette score
10 return ext_list;

11 Function Extend(Q, d, k, tree_strategy = false):
12 wd = ans(Q, d) // wd: working data
13 lwd = kmeans(wd, tree_depth) // lwd: labelled wd
14 quality = silhouette(wd, tree_depth) // silhouette: clustering

quality
15 if tree_strategy then // allow any depth for the tree
16 tree = DecisionTree(lwd)
17 conditions = getDisjunctionConjunction(tree) // get one

extension per cluster
18 else
19 tree = DecisionTree(lwd, k)
20 conditions = getConjunction(tree) // get one extension per

leaf
21 end
22 Sc = {}
23 conditions = sort(conditions); // (sort by length)
24 foreach c in conditions do
25 Sc = Sc ∪ σc(Q)
26 end
27 return Sc, quality;

4.5 Solution 73

dataset reaches one and only one node at each split, and therefore one and only one
leaf of the tree. As each extension corresponds to one leaf, they all contain different
tuples from ans(Q, d).

(3) By property of extension we have ans(Qi, d) ⊆ ans(Q, d), so we obtain
n⋃

i=1
ans(Qi, d) ⊆

ans(Q, d). Moreover, as a node splits on opposite conditions, any tuple from
ans(Q, d) satisfies one and only one condition at each split. Therefore any tu-
ple t from ans(Q, d) necessarily ends up in the result set of an extension, so there

exists i ∈ 1..n such that t ∈ ans(Qi, d) and therefore
n⋃

i=1
ans(Qi, d) ⊇ ans(Q, d).

4.6 ExplIQuE: presentation of the web prototype

4.6.1 Implementation

Our objective was to develop a prototype to query a relational database with the
help of query extensions. To this end, we started by implementing all necessary
algorithms using Python 3, with the help of the scikit-learn library [Ped+11]. In
order for these algorithm to be easy to use, we developed a web application named
ExplIQuE: Exploration Interface with Query Extensions.

The backend of the application relies on Flask3 framework, and is therefore imple-
mented using Python 3. It performs all the necessary computations to produce the
extensions, query the database, etc.

The frontend, that is the interface between the user and the backend, is implemented
using the React4 javascript library.

Data is stored in a relational database that can be either MySQL or Oracle. Optional
external files can be stored outside the database in a dedicated folder.

We will now present the different features offered by the interface.

3http://flask.pocoo.org/
4https://reactjs.org/

74 Chapter 4 Data selection and exploration in SQL for imprecise queries

http://flask.pocoo.org/
https://reactjs.org/

Fig. 4.5: Snapshot of ExplIQuE connection page

4.6.2 ExplIQuE’s features

ExplQuE has been designed in order to connect to any database that the user has
access to. As a result, it opens on a connection page, a snapshot of which is presented
on figure 4.5: this page only ask for all the necessary information required to connect
to the database.

After connection, the application opens its main page, presented on figure 4.6. On
this second snapshot, all the different features of ExplIQuE are presented. The
interface is divided into two main zones, that are clearly identified visually:

• The left zone of the interface is a standard SQL editor: the results are printed
in a table below a given SQL statement. There is an is the additional button
allowing to ask for the extensions sets of the current query.

• The right zones concerns all the extensions-related features. When a user asks
for extensions in the SQL editor, they are printed in this zone.

In addition, to printing the extensions, ExplIQuE offers all the necessary tools to
use the various configuration options to specify the parameters from algorithm 3
they can be accessed by clicking on the � symbol at the top of the extensions zone,
therefore opening a configuration panel presented on figure 4.7, allowing to enter
the parameters necessary to algorithm 3.

4.6 ExplIQuE: presentation of the web prototype 75

Fig. 4.6: Snapshot of ExplIQuE main page

Fig. 4.7: Snapshot of ExplIQuE configuration panel

76 Chapter 4 Data selection and exploration in SQL for imprecise queries

On figure 4.6, it can also be noticed that the silhouette coefficient used to rank the
extensions sets is indicated, right next to the size of the set. Inside a given set, the
extensions are also ranked, and to make it more explicit to the user, the user is given
two indications to help her understand how restrictive a given extension is:

• The first one is how many tuples would be returned, if the considered extension
is added to the current query.

• The second one is the narrowing ratio, which is the proportion of tuples from
the initial query are removed by the considered extension. For a given query
Q and one if its extensions Qext, the narrowing ratio is therefore defined as
follows:

narrowing_ratio = |ans(Q,d)|−|ans(Qext,d)|
|ans(Q,d)|

Finally, the web interface offers two visualizations, aiming at facilitating the exten-
sion’s selection:

• The first is available for any database. It is a scatterplot of the results of
the query being extended, where the tuples are grouped by extension: this
visualization is clearly visible on figure 4.6. The data is projected on two
dimensions using principal component analysis (PCA), and each extension is
presented using a different color. Moreover, the visualization is interactive,
as the user can see the extension corresponding to the datapoints by moving
the mouse over the scatterplot. The purpose of this visualization is to show in
one glance to the user the size and dispersion of an extension, as well as how
separated each extension is with respect to the others.

• The second visualization is only valid for databases in which the tuples can be
associated to images: this happen for some classification, and these images can
be particularly useful to chose an extension. In this particular situation, the
images associated to the results of an extension can be displayed as a mosaic in
ExplIQuE. This is useful for the user to easily identify the diversity of data that
an extension represents: she might see visually that the extension contains
homogeneous images, or on the opposite easily identify outliers. An example
of such a visualization is given on figure 4.8, on a database containing pictures
of bacteria.

4.6 ExplIQuE: presentation of the web prototype 77

Fig. 4.8: Snapshot of ExplIQuE images visualization

4.7 Scaling experimentations

Whether it is on the web application or in an existing DBMS, one important feature
of the extensions is that they should be computed quickly, so that the user does not
have to wait to obtain the suggestions. Indeed these extensions can be seen as a
form of query completion, similar to the completion offered by most search engines:
the user therefore wants to get these results quickly.

The main bottleneck is the tuples clustering, because it requires to compute the
distance for each pair of tuples in the result set, therefore having a polynomial
complexity. As mentioned in section 4.5.4, one possible solution to limit the response
time of the algorithm is to sample the tuples before computing the extensions: this
allows to obtain a trade-off between user waiting time and the extension’s precision.
It is therefore necessary to evaluate what balance is acceptable, to have relevant
extensions in a reasonable amount of time. It is also important to see if other
parameters of the algorithms influence the extensions computation time. To this
end, we performed an experimental evaluation to assess the correct sampling ratio.
These experiments were run using a machine with an Intel Core i7-7600U (2.8 GHz)
CPU and 16GB of memory.

Several parameters can influence the time necessary to compute the extensions:

78 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.9: Extensions computation time vs number of attributes and extensions (10 000
tuples)

• The number of attributes: this mostly influences the decision tree construction,
as each node of the tree has to test all attributes to chose the best splitting
condition.

• The number of tuples: as explained, this mostly influences the clustering

• The number of extensions to compute: the more there are, the more cluster
there is, and the more classes there are for the decision tree, which is therefore
bigger.

To determine what parameters influence the response time, we designed an experi-
mentation to explore the influence of the parameters on the extension’s computing
time. The scaling experimentations were conducted on a database with data from
the Large Synoptic Survey Telescope5 containing 500 000 tuples over 25 attributes.
It only contains one table, as the number of tables only influences the evaluation
of the initial query, but not the extension process per se. The influence of the three
aforementioned parameters was studied, with respect to the extension’s computation
time: number of tuples, number of attributes, and number of extensions to compute
on figure. These parameters were studied two by two, to study every aspect of their
influence, and are presented on figure 4.9, 4.10 and 4.11.

5https://www.lsst.org/

4.7 Scaling experimentations 79

https://www.lsst.org/

Fig. 4.10: Extensions computation time vs number of extensions and tuples (20 attributes)

From figure 4.9, it follows that the number of attributes barely influences the
computation time. The number of extensions does seem to slightly increase it,
which is also visible on figure 4.10, but it is negligible compared to the influence
of the number of tuples: on figure 4.11, it is obvious that it is the most influential
parameter. It is also clear that for a high number of tuples, the time necessary to
produce the extensions is not acceptable for an online system, as users will not
accept to wait more than a few seconds to obtain their results. This confirms the
necessity of sampling the initial query’s results, in order to provide the extensions in
a reasonable amount of time.

From this first experimentation, it appears that up to 50 000 tuples, the extensions
are computed in less than 20 seconds, and below 5 seconds for 30000 tuples. But this
is not enough to determine if this is a good sampling size. Indeed, the quality of the
extensions should also be taken into account: even if they are computed quickly, they
should still be a good representation of the extensions obtained when taking all the
tuples into account: to this end, a second round of experimentation was conducted,
to evaluate the impact of sampling over the extension’s results. First, the extensions
for the query returning the entire database (500 000 tuples) were computed, using
the full answer set. Then, for the same number of tuples, the extensions were
computed, but over a sample of the initial query’s result, using different sampling
sizes (100, 1000, 5000, 10 000, 25 000, 50 000). Finally, the obtained extensions
were compared to the ones obtained without sampling, by comparing how they

80 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.11: Extensions computation time vs number of tuples and attributes (10 extensions)

Y1 Y2 · · · Ys sums
X1 n11 n12 · · · n1s a1
X2 n21 n22 · · · n2s a2
...

...
...

. . .
...

...
Xr nr1 nr2 · · · nrs ar

sums b1 b2 · · · bs

Tab. 4.3: Example of a contigency table

partition the initial tuples, using the adjusted rand index [Ran71]: given two
partitions of the same set S of n elements, namely X = {X1, X2, . . . , Xr} and
Y = {Y1, Y2, . . . , Ys}, the two partitionings are compared using a contingency table
such as represented on table 4.3. Each cell nij denotes the number of objects in
common between Xi and Yj : nij = |Xi ∩ Yj |. From this table, the adjusted rand
index (ARI) is defined as:

ARI =
∑

ij (nij
2)−

[∑
i (ai

2)
∑

j (bj
2)

]/
(n

2)
1
2

[∑
i (ai

2)+
∑

j (bj
2)

]
−

[∑
i (ai

2)
∑

j (bj
2)

]/
(n

2)

In addition, two sampling strategies were compared: random sampling, and system-
atic sampling (see [Coc46]). The results of these experimentations are presented
on figure 4.12. Systematic sampling requires slightly more tuples to reach the same

4.7 Scaling experimentations 81

Fig. 4.12: Comparison of extensions quality against the sampling size

behavior as random sampling. However, both samplings rapidly reach good results
in comparison to the full data extensions, as with a sampling of 1000 tuples, the
adjusted rand index is already above 0.8 (1 meaning results identical to non sampled
dataset). With 10 000 tuples, the score reaches 0.98 with random sampling, and
the computation time with respect to figure 4.11 is around 5 seconds. These results
show that sampling can considerably speed up the extension computation while
keeping a very acceptable quality. Those results were confirmed on several other
databases not presented in this paper, showing that sampling provides an excellent
trade-off between computation time and extension’s quality.

It should also be noted that in order to speed up more the extensions computation,
it is possible to store the results obtained for one query, in order to reuse it later to
avoid recomputing extensions that had already been obtained before. As a result,
for each query, it is possible to look in the query log to make sure its extensions are
not already saved in the system. Finally, as the most expensive part of the process is
the clustering, that requires to compute distances between each pair of tuples, we
also propose to save the distance matrices, so that they can be directly reused in
other extensions computations. Using these two methods, even when an extensions
set takes some time to compute, it will only happen once, and it will also speed up
extensions computation for following similar queries.

82 Chapter 4 Data selection and exploration in SQL for imprecise queries

4.8 User experimentation

In addition to being able to return the extensions in a reasonable amount of time, it
appeared necessary to assess whether or not such extensions are useful, for a user
with an imprecise query and/or in a exploratory setting. It was therefore decided to
perform a user experimentation, to answer the two following main questions:

1. In terms of writing time, is it faster to reach a desired set of tuples using
extension?

2. How well is the extension tool accepted by users?

4.8.1 Organization

To answer these questions, an experimentation was designed, in the form of a
SQL competition for 70 computer science students (last year bachelor students and
master students). It should be noted that ExplIQuE had not yet been developed at
the time of this experimentation, that therefore took place using a previous version
on the interface, visible on figure 4.13. As a consequence, this previous version
did not have the possibility to fully configure the interface further than choosing
the number of extensions to compute. The features visible on figure 4.13 are the
following ones:

(A) SQL editor to write the queries

(B) Ask for an extensions set, and choose its size

(C) See the query results

(D) See the extensions, and the number of tuples returned if it is added to the
current query

All students from the computer science department were welcome to participate, as
long as they had at least basic knowledge in SQL and data management. They were
initially only told that they would have to address several SQL-related challenges,
and agreed to participate to a one-hour experimentation.

Prior to the experiment, participants were randomly divided into two groups. The
division was however balanced in terms of number of students from each level
(bachelor, first year and second year master students): this was done to avoid a

4.8 User experimentation 83

Fig. 4.13: Snapshot of the interface used for the experimentations (ExplIQuE’s ancestor)

bias because of an uneven distribution that could cause a group to perform better
because it has more experienced students.

The experiment required to evaluate SQL queries on a database. For this, the first
group (referred to as group EXT from now on) had access to the extension tool, from
figure 4.13. The second group (group NoEXT from now on) had a tool similar to the
one of group EXT visually, and with the same classic SQL features, but without the
extension possibility. Thanks to this setting, it was therefore possible to compare the
results of the two groups, i.e to see the difference between groups with and without
extension possibility, while working under similar conditions. Because the design of
such questions was the most delicate part of the experiment setup, we will discuss
their creation in the following section.

4.8.2 Design of the test

To test the query extension interface, we had to design imprecise questions, to put
the students in the situation for which the extensions were designed. The design of
these questions was delicate, to find the right level of difficulty. When conceiving the
questions, our purpose was to propose a fair situation for groups EXT and NoEXT.
For this reason, we eliminated two types of questions :

• Questions that were trivial with extension, but impossible to do without it:
this would have given an unfair advantage for group EXT, and any result on
such question would have been meaningless.

• Questions for which extension has no interest: queries with empty result sets,
dates comparison, specific operators from DBMS, etc. Such questions are out
of the scope of what the experiment is meant to evaluate.

84 Chapter 4 Data selection and exploration in SQL for imprecise queries

All questions were designed according to the same pattern: they exposed a sce-
nario,asked a question on it, and then asked to find out the SQL query to solve it.
The questions were separated into two categories:

• The first three were classic SQL queries, that are directly and easily trans-
formable into SQL queries, similar to the ones that can be found in an "intro-
duction to SQL" exercise. On such queries, the extensions are not necessary
nor useful: these questions were used to verify that each participant really had
basic SQL skills, and that groups EXT and NoEXT had similar results, and were
therefore well balanced. As a result, if both groups had similar results on these
questions, any difference that could appear for the following ones were not
due to a bias from the participants’ level.

• The other questions (number 4 to 10) were the imprecise ones: their conver-
sion into an SQL query was not straightforward: the questions required some
fumbling and several trials to reach the expected results, as in an exploratory
context. The questions’ specification was less strict, as selection conditions
were not specified in terms of numbers, but rather as imprecise queries, using
adjectives such as higher, bigger, lower, above average, low, etc. However, the
final expected SQL query required to identify numerical conditions to discrimi-
nate between the tuples, and to translate the description of data given in the
question.

Even with those specifications, the level of difficulty for the second group of questions
was not easy to settle: formulating those vague questions requires to choose carefully
the vocabulary used in the question. Moreover, even though the test aimed at
reproducing an exploratory context, it was necessary to give the participants some
clues, so that they could have some idea of when their query was precise enough.
We therefore indicated the approximate number of tuples the query was supposed
to return.

In addition, we also proposed a question based on a visualization (presented on
figure 4.14), asking participants to formulate queries that would return a part of
these visualizations. The objective was to transform a visual pattern into a query,
so they had to identify the pertinent conditions to characterize the given pattern.
This part of the experimentation then inspired the additional functionalities for the
interface.

4.8 User experimentation 85

4.8.3 Test’s questions

Based on all these requirements, the 10 questions were designed, as well as the
scenario and database that surrounded these questions. The participants were given
the following scenario:

"You’re a new member of a post office, in charge of packages. When
you’re not at the front desk taking care of customers, you have access to

data recorded about the packages sent from your post office. For
simplification, we will focus on the packages leaving the post office to

other destinations".

They were also given the SQl code that created the database’s schema, which is as
follows:

CREATE TABLE C i t i e s (
c i t y _ I D DECIMAL ,
d i s t ance DECIMAL ,
PRIMARY KEY (c i t y _ I D)

)

CREATE TABLE Packages (
package_ID DECIMAL ,
d e s t i n a t i o n DECIMAL ,
length DECIMAL ,
width DECIMAL ,
he ight DECIMAL ,
weight DECIMAL ,
p r i c e DECIMAL ,
PRIMARY KEY (i d _ c o l i s)
FOREIGN KEY (d e s t i n a t i o n)

r e f e r en c e s V i l l e s (i d _ v i l l e)
)

Table Cities contains 30 tuples, and Packages 11000 tuples. In addition, the
participants were given this final indication:

Table Packages has one entry per package that left your post office.
From the destination of a package, you can see how far it was sent, by

joining tables Packages (11000 tuples) and Cities (30 tuples) on
attributes destination and city_ID.

86 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.14: Data visualization for question 4 of the user experimentation

Questions are ordered from easiest to hardest :you should therefore
answer them in the given order. First three questions are simple, while
the others are voluntary more complex, and finding the required SQL

query in questions 4 to 10 required more exploration.

The questions were then as follows:

1. This first question is here so that you can get familiar with the data and the
tools at your disposal. Please test the two tools (SQL software and online form
for answers) with the following query, that is a join between the two tables
(Expected result size: 10 999 tuples):

S e l e c t *
From Packages , C i t i e s
Where Packages . d e s t i n a t i o n = C i t i e s . c i t y _ I D

2. Maximum size limit authorized for a package is 9000 grams. However, some
exceed this limit without being detected. Give the query to obtain the ID of
packages whose weight exceed this limit. (Expected result size: 73 tuples)

3. What query can you write to obtain the average length of packages sent less
than 100 kilometers from your post office? (Expected result size: 1 tuple)

4.8 User experimentation 87

4. A little bit interested by data analysis, a colleague of yours had, with a spread-
sheet, visualized some curves from the database. By plotting packages prices
against their height, he/she had noticed a group of packages very distinct and
well separated from the others, which is presented on figure 4.14, and circled
in red. Can you find the query that returns all packages belonging to this
group? (Expected result size: 33 tuples)

5. According to some colleagues who’ve been working here for years, heaviest
packages are the ones going to very distant destinations. The intuition behind
this is that sending a package far away is expansive, so customers put many
things in one package to compensate. Can you identify packages that do not
comply with this, i.e that are not heavy but are sent far away? (Expected result
size: 13 tuples)

6. Once at the regional sorting center, packages go through a machine that auto-
matically sorts them according to their destination. However, this machine is
sometimes defective. Indeed, when a package is less than 480g, the machine
does not always detect it, and an operator has to take it and process it manually.
This phenomenon is marginal, but more likely to happen if in addition to its
light weight, the packages is small regarding its length and width. On all
packages registered in your database, 12 have caused a problem. Which query
can identify those 12 packages?

7. Some packages are sent to a city that is very close to your post office, less than
10km away. Moreover, some are very light (less than 550g), and you wonder
why people pay the post office to transport them while they would quite easily
do it themselves. One of your colleagues has an hypothesis : maybe those
packages are cumbersome and therefore hard to transport. Can you identify
packages validating this hypothesis? (Expected result size: 8 tuples)

8. A customer arrives at the post office, because he needs the ID of a package
he had send, but isn’t able to find. In order to help him, he gives you a few
informations: the package was light, less than 450g and its dimensions (mainly
length and width) were surprisingly big in regard to its weight. Can you give
the query returning such a package? (Expected result size: 1 tuple)

88 Chapter 4 Data selection and exploration in SQL for imprecise queries

9. When working at the front desk, one of your colleagues made a mistakes on
four on the packages he registered. Luckily, he remembers their length was
above 140cm, and he therefore applied a special tarification, as those kind of
packages are more complicated to deliver due to their size. But he applied the
wrong tarification, and those packages have therefore an abnormally elevated
price. Can you identify those packages? (Expected result size: 4)

10. At question 2, you showed that 73 packages are above the weight limit. But
your colleagues in charge of putting packages in the trucks say that a third of
packages are really heavy, and require two employees to be lifted, in order to
avoid back pains. Can you modify the query for question 2 in order to identify
those packages? (Expected result size : 3073 tuples)

4.8.4 Test’s setup

Participants had one hour to answer the 10 questions. They used the tool to write
queries and evaluate them on the database, and once they thought they had the
right query, had to submit it online. They were not told whether their answer was
right or not, as in real-life where only the data analyst can know if she obtained the
data she wanted, and to avoid participants that would just try several possibilities to
bypass the difficulty of the question.

During the hour of experimentation, we were able to monitor the time each partici-
pant spent on each question. After the experiment, we checked whether the answers
they submitted were correct or not. Moreover, we were able to say, for each question,
if participants from group EXT had used an extension or not to select the data.

At the same time, group EXT had to adapt to the extension tool, and they did not
receive any specific training on how to use the tool before the test. They were only
given a one-page instruction sheet on how query extension worked. But they did
not get any additional time, and had to use the hour to both answer the questions
and master the extensions (even though they were not forced to use it). This was
done to avoid influencing them on their use of the extension tool, and to see how
they would adapt to this new functionality.

Finally, after completing the 10 questions, participants were asked to answer a quick
survey to collect their opinions and feelings on the experiment.

4.8 User experimentation 89

(a) Difficulty of questions perceived by
group EXT

(b) Difficulty of questions perceived by
group NoEXT

Fig. 4.15: Participants’ feedback on questions difficulty

4.8.5 Results

Validation of experimental setup

First, we validated that the assumptions that had been made regarding the experi-
mental setup were correct, by analyzing the feedbacks given by the participants. The
feeling of participants regarding the difficulty of the questions is given on figures
4.15a and 4.15b. In both groups, only 3.4% of participants felt like questions were
too difficult. In both cases, the majority of participants felt like questions were
correctly ordered from easiest to more difficult. The only difference is that more
people in group EXT felt like questions were too easy (31.1% against 6.9%), as the
extension tool helped them in answering the questions that were supposed to be
really difficult.

On this first evaluation, we met our objectives with respect to our questions difficulty.
This is also an indication that query extension can make answering SQL questions
easier for users.

Query writing time

In a second phase, we evaluated the time spent by each participant on the questions,
to see if the extensions allowed to identify the desired results faster. The first
result that is interesting to look at is how much time each group spent on average
answering each question: those results are presented on figure 4.16a. There are
several interesting points to notice on this figure :

• For questions 1 to 3, the results of the two groups are similar, which was the
initial objective. When extension was not necessary, the performance of both
groups were equivalent.

90 Chapter 4 Data selection and exploration in SQL for imprecise queries

(a) All answers (b) Only correct answers

Fig. 4.16: Histogram of average answering time per question, for group EXT and group
NoEXT

• Question 4 was still easy for both group, as could be expected as the visualiza-
tion was here to help . Even though the use of extension could have helped
on this question, it does not seem to have made a difference, as the average
answering time is very similar for both groups. This means that a good and
efficient visualization, when efficient, can also be useful.

• For questions 5 to 10, the difference between the two groups is much more
important and it is clear that group EXT performed considerably faster than
group NoEXT. This is a strong argument to support the fact that SQL query
extension can indeed make the SQL query writing faster. The difference is
stronger for questions 7 and 8, which seem to have been the most difficult
questions for participants.

However, figure 4.16a takes into account all answers from participants, which means
that some of those answers might be wrong. And a participant who did not give a
good answer might have spent a lot of time on a question looking for the answer
without finding it, or on the contrary given up quickly as he did not know how to
find the answer. For this reason, figure 4.16a was recomputed, taking into account
only the answering time from participants who had given the correct answer for the
considered question: such results are presented on figure 4.16b. The tendency is
similar, and group EXT still performs considerably faster than group NoEXT. Actually,
results from group EXT are even slightly better, especially for more complex queries
like for question 7 and 8.

To understand the behavior of participants, it is possible to look at the boxplot of
answering time per question for each group, on figure 4.17, that only takes into
account correct answers. The main observation is that results of group EXT are

4.8 User experimentation 91

Fig. 4.17: Boxplot of answering time per question, for groups EXT and NoEXT, only for
correct answers

much more packed than for group NoEXT: participants who had access to extension
had a way to help them if they were stuck on a question, contrary to group NoEXT
participants who had to search by themselves until they identified the answer. This
is flagrant once again for question 7, where someone spent more than 25 minutes
looking for the answer.

On this second evaluation, it is therefore possible to draw the following conclusion:
when evaluated in similar conditions, the group with access to extensions performed
faster than the group with only classic SQL tools. This therefore answers one of our
initial questions. To answer the second question, it is now necessary to evaluate if
the participants got used to the extensions.

Extension tool acceptance

As mentioned previously, it was also possible to say whether a participant had used
extension for a given question or not. The proportion of extension use per question
is presented on figure 4.18. We only presented question 4 to 10 on which extension
was possible. It can be seen on this figure that participants did not always use the
extension tool. In total, 70% of participants from group EXT used query extension at
least once, while the others completed the test without using it. On average, on the
seven questions for which completion was possible with the extensions, participants
used it 4.2 times.

92 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.18: Percentage of extensions usage for questions 4 to 10 for group EXT

Additional results were analyzed to understand those observations. We first analyzed
the way participants had used extension: on figure 4.19, interesting patterns can
be observed. The main observation to do is that once participants have used query
extension for a question, they are very likely to use again in the next question. This
is indicated by the continuous blue lines on this figure. This is a really important
result, as it showed that once a user has understood the utility of extension, she
will use it again. This observation is particularly true for participants number 1 to
13, which in addition did not make many mistakes. Participants 14 to 19 also used
extensions a lot after their first use, but made more mistakes: when looking at their
answering time, it seems that they did not have much time to complete the last
questions, and therefore might have been in a rush and did not give correct answers.
Finally, participants 20 to 24 seem to have tested extension, but preferred to finish
the test without using it.

On figure 4.20, we divided group EXT into two groups for each question: participants
who had submitted a query generated with extension (group EXT1), and others
participants from group EXT in group EXT2. We then compared their average
answering time for each questions, as well as for group NoEXT. It should be noticed
that for each question groups EXT1 and EXT2 might be different as participants
who used extension are different from one question to another. First, on question 4,
group EXT1 is slower: as it is the first question on which extension could be used, we
interpret this as the time necessary for participant to get familiar with the extension
tool. But for all the other questions, group EXT1, that used the extensions answers
the query faster than the two other groups.

4.8 User experimentation 93

Fig. 4.19: Type of answer per question, for participants who used the extensions at least
once

Moreover, even though group EXT2 answered without extension, its behavior is
different from group NoEXT on question 4 to 10. Indeed, except for question 10
where it is the slowest group (but on previous figures, question 10 always has specific
behaviors), the tendency of group EXT2 is closer to the one of group EXT1 than to
the one of group NoEXT. This is explained by the fact that participants who did not
use extension in group EXT were students good enough in SQL to be able to answer
the question quickly: for them, taking the time to understand the extension tool
would have been a waste of time as they were comfortable enough in SQL and had
enough information, to succeed the test without it.

Take-out lessons from results

These experimentations have allowed to answer our two initial question on the
proposed query extensions tool. The first question concerned the query writing
time: based on the results, it does appear faster to reach the desired tuples using the
extensions, when the initial query is imprecise.

We also answered our second question, showing the tool is well accepted by users,
if they feel the need to use it: they are likely to use it again once they have tested
the extensions. Therefore, the use of extensions was not a single isolated try by
participants, but that a first use encouraged them to use it again.

94 Chapter 4 Data selection and exploration in SQL for imprecise queries

Fig. 4.20: Histogram of average answering time for questions 4 to 10, for groups EXT1,
EXT2 and NoEXT

4.9 Conclusion and perspectives

In this chapter, we considered the problem of selecting the relevant data in a
relational database, by making two assumptions: the user might not exactly know
what she is looking for, and her manual work should be kept minimal. To this end,
we therefore proposed an exploratory solution, but that relies on SQL and returns a
SQL query, so that the user is kept in a familiar environment and can reuse the query
in other contexts, or on other instances of the database. We also tried to limit the
necessary user input, and for the required ones, we proposed solutions that could be
applied to make suggestions of what values to used for the parameters.

The proposed solution consist in, for a given SQL, the suggestion of an extensions-set,
that have a twofold objective: they give refinement solutions for the considered
query, while also helping the user understand what is contained in the current
answer set. Such extensions are meant to assist user confronted to imprecise queries,
when they know the data they are looking for, but are having a hard time translating
it into a formal SQL query. In this setting, the user can engage in an iterative process,
by starting with a general query, and refining it using the extensions. Moreover, the
utility of such extensions has been demonstrated through our user experimentation,
showing that even if the process does not involve any complex algorithm, it does
provide interesting suggestions, by simply grouping tuples that are more likely to be
selected together by a user, and computing the selection conditions that characterize
them.

4.9 Conclusion and perspectives 95

Such solutions are very valuable to identify the desired data in a relational database:
contrary to chapter 3, the proposed solution does provide a SQL query, rather than
just a set of tuples, therefore summarizing the whole set of tuples in one query, and
making it reusable. These extensions is also a way to integrate knowledge usually
provided by machine learning techniques externally, directly into the database,
therefore keeping the user in the database context for the data selection.

Several extensions of this work could be envisioned, to allow for more complex
queries, and to remove even more work from the user: for example, it could be
interesting to adapt the extensions to directly identify queries to start from, rather
than having to ask the user for a first query input. Alternatively, it would be relevant
to extend other parts of the query: for example suggest other tables to join, other
columns to select, or even aggregate functions for the group by clause.

4.9.1 Towards chapter 5

The extensions-based solution in this chapter is a practical answer to the problem of
identifying and selecting the relevant data in a relational database. But the data is
selected to answer a question, to solve a problem, to perform a specific task. As a
result, the data selection is often only the first step of a bigger process, even though
it can be a time consuming process. And because the user selects this data with
a given goal in mind, she is usually the only one able to say whether or not she
has selected the required data: that can also be a difficult burden, especially if the
number of tuples to select is high. For this reason, after data selection and before
moving on to the central task of the process, it might be interesting to consider an
intermediary step, that would evaluate for the user if the selected data is appropriate
for the considered task. We will therefore consider this step, in the case of predictive
models, in the following chapter.

96 Chapter 4 Data selection and exploration in SQL for imprecise queries

Evaluating data adequacy
with the predictive task

5

Chapter’s outline
In this chapter, we try to assess, given the data selected for building a predictive
model, how much it "fits" the considered classification task. To this end, we
propose an upper bound on the accuracy of classifiers, based on the satisfaction
of the functional dependency between the features and the class to predict. We
propose experiments on synthetic and real data, and discuss how to adapt to the
different domains of the features. We also expose two industrial collaborations
with Cemafroid and Airbus Helicopters.

We start with the related work in section 5.2. We then present our FD-based
approach in section 5.3. We discuss how to adapt to different features domains
in section 5.5. We then explain how to discuss models limitation in section
5.6. Finally, we propose to refine the data selection using contextualization in
section 5.7, before concluding in section 5.8.

5.1 Introduction

5.1.1 Data selection for predictive models

Usually, data selection is just the first step necessary to move to the main part of
the process, which is the building of a predictive model. For sake of clarity, in this
chapter, we will mainly focus on classification to produce, therefore on dataset
where there is a class to predict, with a small number of possible values. We will
discuss later on how to deal with regression datasets. After data selection, there is a
fundamental question to answer: how can the user know that the selected data is
enough, or is adequate, for her considered problem? Other than her own instinct
and knowledge, are there assurances that can be given to assess the pertinence of
the data for a given problem? These questions are crucial, as databases users ask

97

them every time they select data, in order to know if they should keep querying
and exploring the database, or if they can move on to the next step in their process.
Such questions relate to what Lise Getoor calls "the smell test" [Get19]: it should
feel like there is a plausible connection between the features and the class to predict,
otherwise there is no reason to train a classifier.

Answering these questions can be costly: if the user spends too much time on the
data selection, she is delaying the process that is actually using the data, and that is
usually what she can get value from. On the opposite, if she moves to the next step
too early, she might get poor results, meaning she will eventually have to reperform
the data selection, loosing even more time in total. In this chapter, the general
question can thus be summarized as follows:

Can we evaluate whether or not the selected data fits the predictive task?

Of course, this is an extremely large and difficult question: depending on the
considered task, the answer and the evaluation tools can greatly differ. It is also
extremely difficult to propose a general answer, as such questions are necessarily
tightly intertwined with the application domain related to the data. Predictive
models are widely used nowadays, in many industrial contexts, and they are are a
real source of potential value for many companies. Moreover, the previous research
question is even more true in this context, as the data used for the construction of
such predictive models has a direct impact on the performances of such models. As
a result, the research question of this chapter can be refined as follows:

How to evaluate the adequacy between the data selected for a predictive
model and the predictive task?

Indeed, one of the main objective of predictive models is to have accurate ones, in
the sense that their prediction should be correct as many times as possible. This
can seem trivial, but reaching this objective can turn out to be difficult in practice,
because it highly depends on the data available in practice. Based on this data, it is
important to be able to decide whether or not it can be used to build a predictive
model, or if it would just be like trying to find something that does not even exists
in the data.

If the adequacy is evaluated , it can then be used to decide if the training set should
be modified (i.e refine the data selection), or if the predictive model can be trained
on the considered data. Ideally, when the quality is not satisfactory, this evaluation
of the dataset should also give an indication of what could be done to improve it,
or at least explain what is currently wrong with the selected data, with respect to

98 Chapter 5 Evaluating data adequacy with the predictive task

the predictive task. This would be extremely helpful for the user, that instead of just
knowing she has to reselect her data, could have a better understanding of what is
wrong with the initial selection.

5.1.2 Trusting predictive models

Over the last decade, building classification models, using machine learning algo-
rithms, has become completely mainstream. it has never been more easy to build a
model on any dataset, thanks to the development of many machine learning libraries,
that allow to train and test a model in a few steps, sometimes without having to
write a single line of code. This is extremely practical, but also pretty perilous, as
it is tempting to just dive into the model’s building, without really questioning the
data that is used to train it. In the worst cases, this means that it is possible to build
models using data on which there is nothing to learn from: of course, the scores
used to evaluate the model’s performances will therefore be low, if not disastrous.
But it is unfortunate to wait for the whole model to be trained and tested before
realizing something is wrong with the initial dataset: it therefore appears necessary
to be able to take a step back, and to spend some time to assess the data’s adequacy
with the predictive task, in most of machine learning applications.

Another problem that might arise during the construction of a predictive model is the
trust user have in the model: in order for it to be used, it is important to be able to
understand how it works, and on what the predictions it makes are based. However,
many algorithms can look like black boxes to users, especially if they are not familiar
with machine learning algorithms. Indeed, if some algorithms like decision trees
can be interpreted, for others, it is much more difficult to understand their decision
process (for example neural networks). Nonetheless, it is crucial for domain experts
to be able to trust the models, so that they are not reluctant to use them: these
models are sometimes used to take crucial business decisions, with a possibly use
impact for a company. Domain experts therefore have to be 100% confident in the
predictions made by the models. As a result, it is necessary to develop solutions to
explain, interpret and evaluate how and why a model makes given predictions.

Being able to explain the prediction of a given model is not only a matter of being
able to explain an algorithm: essentially, the output of a given model almost entirely
depend on the data used to train it. Additionally, the data is also what matters for
a domain expert, because it is what she understands, and what she is interested
in. The dataset selected for the predictive task is therefore the heart of the process,
and should be used to explain to the domain expert why or why not the considered

5.1 Introduction 99

dataset can satisfactorily be used to train a training model, and therefore why or
why not she can trust the prediction made by such model.

5.1.3 Existence of a function and dependencies

If we recap the previous observations, the objectives of this chapter can be summa-
rized into the two following main points:

• Given a dataset, assess if it will allow to train a predictive model for a given
predictive task.

• Explain what makes a dataset a good fit (or bad) for the considered task.

These two tasks are intricately correlated, and each bring a complementary informa-
tion to a domain expert, with respect to her dataset. Ideally, it would therefore be
interesting to propose a solution that can address the two problems simultaneously.
In this chapter, we propose to consider these two research problems through the
simple mathematical notion of a function: ultimately, a predictive model is an algo-
rithm seeking to define the function that maps the input data to the class/values to
predict. However, some datasets are more likely to correspond to a function than
others, because there are some conditions that have to hold in order to be able to
define such a function. As a result, the question becomes :

How can we evaluate how likely it is for a predictive dataset to follow a
function, and how can we identify the blocking points to the existence of
such a function?

The notion of function is a widely used one, so this question can be tackled using
many different approaches. In the specific case of predictive datasets, we propose
to consider the notion of data dependencies, by considering that data satisfying a
dependency can be characterized by a function. We especially consider functional
dependencies, and more specifically the FD between the features used for the
prediction, and the class/values to predict: if the FD {features} → class is satisfied
(or almost satisfied), then there exists a function from the features to the class:
therefore, a machine learning algorithm might be able to find such function. If the
dependency is not satisfied, then it is necessary to find the data that prevents its
satisfaction, to understand what is going on, and to explain it to the domain expert.
To summarize, we argue that a functional dependency characterizes the existence of
a function that a predictive algorithm seeks to define. To the best of our knwoledge
this relationship is new, despite its simplicity.

100 Chapter 5 Evaluating data adequacy with the predictive task

Considering a dataset, such an approach is thus a way to determine if the selected
data is likely to produce a coherent predictive model, because there exists a function
in the data that can be defined and approximated, or if the dataset does not have
a satisfying quality for the considered task. In addition, we propose to reuse the
well-known notion of counterexamples, that can identify pairs of tuples that are in
contradiction with the existence of the FD. As a result, such counterexamples can
identify the blockages that can lower the model’s performances, and therefore be
used for discussion with the domain expert, and eventually to refine the initial data
selection.

5.1.4 Problem statement

The purpose of this chapter is therefore to use the FD between the features and
the class to assess the adequacy of the selected data with the predictive task. The
objective is to propose a methodology that can be used to determine if the selected
data is coherent with the predictive task considered, to help the domain expert
decide whether or not to spend more time on the data selection. In this setting, this
chapter is based on the following simple yet powerful observation:

Given a dataset r over {A1, . . . , An, C} where C is the class to be pre-
dicted, classification algorithms seek to find out a function to predict
an output (C value) based on a given input (A1, . . . , An values) ; the
satisfaction of the functional dependency A1, . . . , An → C in r expresses
the existence of that function

As a consequence, we have to quantify the satisfaction of the functional dependency:
if it is not satisfied, how far is the data from the satisfaction? Based on this, the
idea is to use this satisfaction to estimate the performances of any classifier on
the considered dataset. The counterexamples preventing the satisfaction of the DF
should also be used to explain these results to domain experts.

Example 12. Let’s take a small dataset from table 5.1 as an example. This is the
dataset about passenger of the famous Titanic, with their ticket class (first or second),
their age range (child or adult), their gender, and whether or not they survived. The
purpose of this problem is to predict if a passenger has survived or not. Such an analysis
can then be used to determine if some passengers were more likely to survive than the
other.

In this dataset, the available attributes are not enough to determine the class. For
example, tuples t2 and t5 both concern male children in second class, however one

5.1 Introduction 101

id Ticket Age Gender Survived
t1 1st Child Female no
t2 2nd Child Male yes
t3 1st Adult Male no
t4 2nd Adult Female yes
t5 2nd Child Male no
t6 2nd Child Male yes
t7 1st Adult Male no
t8 1st Adult Male yes
t9 2nd Child Male yes
t10 1st Child Female yes

Tab. 5.1: Toy dataset: Titanic relation

survived while the other did not. Similarly, the two adult males in first class from
tuples t7 and t8 had two different outcomes. Whatever the classifier, it will irremediably
misclassify at least one of them.

This very simple example shows how the satisfaction of the functional dependency
Ticket, Age,Gender → Survived in a classification dataset highlights the limits a
classifier reaches on a dataset, and how counterexamples are a way to materialize such
limitations.

The contributions of this chapter can therefore be summarized as follows:

• First, we expose our approach to estimate an upper bound of a classifier given
a dataset, based on the satisfaction of the functional dependency between the
features and the class to predict. We propose experimentations on synthetic
data to validate the relationship between the accuracy of a classifier and such a
dependency. These synthetic datasets are generated in order to be "as difficult
as" possible for a classifier, and we propose an algorithm for their generation.

• We then discuss how apply this approach on real datasets, that often contain
different datatypes, and or which the evaluation of the satisfaction of FDs
might therefore have to be adapted.

• Thirdly, we examine how to use this approach to discuss the limitations of the
models with domain experts, especially using the notion of counterexamples.
We present the results and feedbacks from an industrial collaboration with
Cemafroid, a company dealing with the prediction of the ageing of thermic
engines for refrigerated vehicles.

• Finally, we explore the case when the dataset does not appear satisfying to
be used for the predictive task: in this setting we propose a methodology

102 Chapter 5 Evaluating data adequacy with the predictive task

to improve the data selection, by taking into account the predictive task
to perform: we call this method contextualization, as the data selection is
specifically performed for a specific predictive context. We present another
industrial collaboration with Airbus Helicopters, for which we applied our
methodology on their data to predict the oil pressure in the main gear box of
an helicopter.

5.2 Related work

This chapter is at the intersection of several important research problem, as we try
to both evaluate the feasibility of classification from the training data, use such
result to better explain the model to domain experts, and devise strategies to better
identify the tuples of interest. We will now give an overview of the different domains
related to these questions, to show how our propositions relate to other existing
problems:

Classification feasibility One of the main contribution of this chapter is the propo-
sition of an upper bound for the accuracy of classifier. As explained in section
5.3.2, this upper bound is limited to the available data, and does not take
into account the data ditribution, contrary to Bayes error: this error is hard to
compute i practice, and for this reason, several approaches have been proposed
to approximate it: for example in [FH87], a k-nearest-neighbors approach is
used to estimate this error. Alternatively, [Ant+99] how an upper bound of
Bayes eror can be found. Bu appart from Bayes error that give a numerical
evaluation of classification’s feasibility, other solutions have looked at the
factors that can improve or lower a classifier’s performance: in this chapter,
we showed that the functional dependency between the features and the class
has an impact on the accuracy; in [KS13], the authors showed that if there
is a functional dependency between features, it is likely to affect the classifer
negatively. Looking at the features used for classification is of high importance,
and is therefore an important research question: in this chapter, we mainly
focused on adding/removing tuples, but it is also important to consider if more
features should be added (as appeared in the study with Cemafroid), or if
some should be removed. Therefore, many approaches have been devised to
determine what are the features that allow to obtain the best classification
performances, a problem called feature selection [Tan+14]. In [Ghi+15], the
authors explain that the choice of the decriptors (attributes) is crucial, and
propose a list of characteristic a good set of attributes should have. Usually, the

5.2 Related work 103

purpose of feature selection algortihms is to find the best subset of features, so
that it maximizes the performance’s measure [DL97]. As it is a combinatorial
problem, it is time costly, and heuristics have been proposed to address this
problem (see for example [LS+96; YL03; KR92]).

Model’s interpretability In addition to giving an upper bound for the classification,
we also used our methodology to help domain experts in better understanding
their classification models: indeed, they can often appear as black boxes, and
better explaining their decision process is an important research question.
There is therefore a trade-off to find between achieving a satisfying accuracy,
while being able to interpret the decisions made by such models. The problem
of interpretability of predictive models has been addressed from different
angles (see [Car+19] for an overview). First, there are two kinds of models:
some are interpretable by nature, such as decision trees, while others require to
develop methods to interpret their decision, for example neural networks that
can seem like black boxes. It is also possible to focus on the data rather than
on the features, as was done in this chapter: this mostly consist in exploring
the dataset [Tuk77], similarly to the exploration techniques proposed for data
selection in chapter 4. Most interpretation methods are algorithm specific,
as they exploit the algorithms characteritics to extract interpretations: many
focus on the interpretation of neural network, because they often show good
accuracy [Mon+17; Kim+17; Sel+17].

Data dependencies and machine learning There has been several attempts to
use key concepts from data dependencies to tackle various problems related to
machine learning. In [AK+18], the authors propose to perform in-database
learning, and use functional dependencies to tackle optimization problems.
More generally, there is a raising interest for integrated key database theory
concepts into machine learning, such as in [Sch+16] that builds least squares
regression models over training datasets defined by arbitrary join queries on
database table. It is also worth mentioning [Zou+06] where an entire machine
learning library has been adapted so that it is compatible with a storage of
data in a DBMS. It therefore appears that approaches combining database
notions into the learning process are promising, as they allow to combine the
data storing to the data processing.

Data dependencies and data cleaning The analysis of counterexamples, and the
eventual removal of some of them, for example through contextualization, is
a form of data cleaning, as it aims at removing the data that is not fitted for
the considered task. Data cleaning is a crucial part in most of data science

104 Chapter 5 Evaluating data adequacy with the predictive task

application, as data scientist actually spend around 80% of their time on
cleaning the data [Zha+03]. As a consequence, many research has be done on
addressing this problem [RD00], many of them relying on data dependencies
and constraints. For instance, [WL18] proposes a semantic data profiler that
can compute samples that satisfy the same constraints than a given dataset.
As the limited expressiveness of functional dependencies did not always adapt
well to the need of data cleaning on real datasets, specific dependencies have
been proposed to identify inconsistencies in a dataset, and eventually repair it.
Conditional dependencies [Boh+07] are functional dependencies that hold
only on a subset of the dataset. Matching dependencies [Fan08] for data
repairing uses matching rules to relax the equality on functional dependencies
and assign values for data repairing. In Holoclean [Rek+17], dependencies
are used to clean automatically a dataset. In [Sa+19], a formal framework
is proposed to bridge the gap between database theory and learnability the-
ory, and is applied to three applications: data cleaning, probabilistic query
answering, and learning. It can even be used to clean dataset in order to
provide fairness [Sal+19]. [Chu+13] introduces denial constraints, allowing
to declaratively specify logical formulae to exclude counterexamples. This
work acknowledges the importance of counterexamples for data cleaning, in
collaboration with domain experts. It can be noticed that there is a tight
relationship between denial constraints and our counterexamples. Indeed,
counterexamples of functional dependencies are no more than a special case
of denial constraints, i.e. 6 ∃t1, t2 such that t1[X] = t2[X] and t1[Y] 6= t2[Y].
Interestingly, we do not rely on expert users to specify logical statements for
defining denial constraints, and thus counterexamples. Our proposition is fully
automatic, and the counterexamples we provide at the end are complex and
do not require any user input. The price to be paid is that we cannot express
the induced denial constraints.

5.3 Estimating the model’s performances from the data

5.3.1 Existence versus determination of a function

To evaluate the adequacy of a dataset with respect to a classification task, we rely
on the mathematical notion of function:

Definition 9. A function f is a mapping of each element x of a set X (the domain of
the function), to a unique element y of another set Y (the codomain of the function).

5.3 Estimating the model’s performances from the data 105

According to the core definition of a classification problem, a classifier is itself
a function: for any input vector, it predicts a unique output value. As a results,
classifiers rely on the strong assumption that there exists -or almost exists- a function
from the attributes to the class in the dataset.

Functional dependencies also rely heavily on this notion of unique output. Indeed,
a relation r satisfies a FD X → C if and only if all tuples that are equal on X are
associated with the same unique value on C. As a result, r |= X → C if and only if
there exists a function f from X to C, on the active domain of r.

If we combine these results, it appears that a classifier determines a function over a
relation, whereas a satisfied functional dependency guaranties the existence of a par-
tial function from the active domain of X to the active domain of Y. Therefore, when
writing a classification problem using relational databases notations, it follows:

Property 7. r |= X → C ⇐⇒ there exists a function f from
⋃

A∈X
adom(A, r) to

adom(C, r)

This problem is clearly easier than the associated classification problem: determining
the function itself requires more investigation than proving its existence. However,
it provides a simple solution that indicates the likelihood of finding a function
following the data proposed to train the classifier. As a result, if the FD X → C is
satisfied, then it means the relation is coherent with the classification task. If it is not,
then it is necessary to study the counterexamples, to determine if their proportion is
acceptable, allowing to still perform the classification task, or if the data selection
should be refined to select more adequate data.

To summarize, our first proposition is, given a classification dataset, to verify the
degree of satisfaction of the functional dependency X → C.

5.3.2 Upper bound for accuracy of classifiers

Upper bound definition

If the satisfaction of the functional dependencyX → C is interesting, the key element
is the proportion of counterexamples. Based on this proportion, it is possible to
estimate how far the DF is from being satisfied. Ideally, it would therefore be
interesting to make a direct relationship between the proportion of counterexamples,
and the performances of classifiers on the relation. Indeed, intuitively, the more
counterexamples there is, the worst the performances should be.

106 Chapter 5 Evaluating data adequacy with the predictive task

In this chapter, we propose to give a bound, similar to Bayes error, but to make
it more specific to a given relation, in order to be able to compute exactly. More
specifically, we propose to estimate the error only taking into account the available
data, by using the evaluation of the satisfaction of the FDX → C over the considered
dataset. Additionally, rather than proposing it as en error, we propose it as an upper
bound of the accuracy from which the error can very easily be derived, as the
accuracy is equal to 1 minus the error).

As a result, if we only take into account the available data to train the classifier,
measure G3 can be used as an upper bound for the accuracy of a classifier on the
considered data, for the FD X → C. Indeed, G3 represents the proportion of tuples
in the dataset satisfying the considered functional dependency. In such a subset
of the original data, there is therefore no counterexample. This means that in the
subset s defined for G3, there exists a function between the left and right hand side
of the dependency. Theoretically, it is thus possible for a classifier to reach a perfect
score if it identifies the correct underlying function, independently of its capabilities
to generalize from it. On the opposite, the counterexamples to X → class are
blocking points for any classification algorithms, as they introduce pairs of tuples for
such that the classifier will misclassify at least one of them. As a result, we propose
the following result:

Theorem 2. Let X ⊆ R be a set of features, C ∈ R the class to be predicted, r a
relation over R, and M a classifier from X to C. Then:

accuracy(M, r) ≤ G3(X → C, r)

Proof. Let s be a maximum subset of r such that s |= X → C. For all (ti, tj) ∈ s, if
ti[X] = tj [X] then ti[C] = tj [C].

Let th ∈ r \ s. Then there exists ti ∈ s, such that (ti, tj) ∈ CE(X → C, r), otherwise
s is not maximal. Even if only the tuples from r \ s are misclassified, and all the
tuples from s correctly classified, accuracy(M, r) = |s|

|r| = G3(X → C, r).

If some tuples are misclassified due to to the algorithm itself, this can only lower the
accuracy, and thus the result follows.

This result is simple but powerful, as it can be applied to any classification dataset,
and offer guaranties on the feasibility of classification over it. Indeed, G3 can then
be seen as a first indicator for the user, to decide whether or not the considered data

5.3 Estimating the model’s performances from the data 107

is adequate for the classification task: if the upper bound is lower than the accuracy
the domain is hoping for, then it is necessary to spend more time on data selection.
For example, in a medical application, it is likely than only a very high accuracy is
acceptable, because human’s lives are at stake: therefore if G3 is low, then there is
no model than will be able to achieve an acceptable accuracy.

It can be argued that measure G3 is much simpler than other existing measures such
as Bayes error, because it only considers the data available to train the model. But
this simplicity is what make it possible to compute it, and what makes it easier to
understand for domain experts, because it allow to discuss on the data they actually
have, rather than considering data that they can’t even consider yet. We will now
discuss how to compute G3 in practice.

Upper bound computation

Now that G3 has been established as an upper bound for any classifier on a consid-
ered classification dataset, it is necessary to explain how to concretely compute it.
Contrary to G1 and G2 that can be quite easily computed by looking at each pair
of tuples, G3 requires to identify the tuples to be removed from the dataset so that
is satisfies the dependency. In addition, the minimum possible number of tuples
should be removed.

Following the definition of G3, in order for s to be maximal, it should keep as
many tuples as possible, while removing all the counterexamples of the given
functional dependency. As a result, this can be done by grouping all the tuples
that share the same left hand side, and then selecting among them the ones that
share the same right hand side, and that are the majority. This allows to remove all
the counterexamples, while removing the minimum number of counterexamples.
The size of s is therefore the sum, for each different left hand side, of the size of
the majority right hand side. Therefore, G3 can be computed with the following
proposition:

Property 8. Let r be a relation over R. Then:

G3(X → Y, r) =

∑
xi

max
yi
|πXY (σX=xi∧Y =yi(r))|

|r|

where xi ∈ πX(r) and yi ∈ πY (σX=xi(r)).

108 Chapter 5 Evaluating data adequacy with the predictive task

Note that X = xi is a simplification for A1 = v1 ∧ . . . ∧ An = vn for X = 〈A1..An〉
and xi = 〈v1..vn〉.

Algorithm 4: G3 computation algorithm

1 procedure ComputeG3 (r);
Input : r the classification dataset,

A1 . . . An → C a functional dependency
Output :G3(A1 . . . An → C, r)

2 map = {}
3 for row ∈ r do
4 if row[A1..An] ∈ map then
5 if row[class] ∈ map[row[A1..An]] then
6 map[row[A1..An]][row[class]]+ = 1
7 else
8 map[row[A1..An]][row[class]] = 1
9 end

10 else
11 map[row[A1..An]] = {}
12 map[row[A1..An]][row[class]] = 1
13 end
14 end
15 maxsum = 0
16 foreach key ∈ map do
17 maxfrequent = max(map[key])
18 maxsum += maxfrequent
19 end
20 return maxsum

|r|

To compute this measure, we propose algorithm 4. It relies on a specific data
structure, presented on figure 5.1, with tuples from table 5.1 as an example. It is a
hash map, with the values over the attributes as key, and another hash map as value.
For the second map, the key is the class, and the value the number of times this class
appears (for these given attributes). The construction of this map is explained from
line 3 to line 14 of algorithm 4: for each row in the dataset, the corresponding values
in the map are filled or created when necessary. Once this data structure is complete,
the algorithm looks at each key in the map: it will then retrieve the number of
occurrences for the class that has the highest value in the second map. All these
maximum values are added to one another, as they correspond to the maximum
number of tuples that can be kept, among the ones that share the same attributes
value, in order to satisfy the functional dependency. This process is explained though
line 15 to 19 in algorithm 4.

5.3 Estimating the model’s performances from the data 109

Ticket Age Gender

1st Adult Male Survived #
yes 1
no 2

2nd Adult Female Survived #
yes 1
no 0

1st Child Female Survived #
yes 1
no 1

2nd Child Male Survived #
yes 3
no 1

Fig. 5.1: Data structure for G3 computation

Example 13. Using figure 5.1, measure G3 can be computed as follows for the Titanic
dataset:

G3(Ticket, Age,Gender → Survived, T itanic) = 2+1+1+3
10 = 7

10 = 70%

5.4 Generation of difficult synthetic classification
datasets

From the previous results, it appears that the counterexamples directly control
part of the accuracy results of classifiers. It is therefore possible to influence the
difficulty of classification datasets, by modifying their proportion of counterexamples.
We therefore decided to generate datasets with a controlled value of G3, and
to evaluate the accuracy of several classifiers over such synthetic classification
datasets. Moreover, the datasets were generated in the worst possible scenario
for classification, by introducing more and more counterexamples, and see the
impact of the augmentation of counterexamples on the classifiers performances: the
generated datasets therefore have a low G3 value, that decreases with the number of
counterexamples. We call such datasets difficult, in the sense that they are designed
to be as hard as possible for a given classifier. We first explain how the synthetic

110 Chapter 5 Evaluating data adequacy with the predictive task

id A1 A2 ... An−1 An Class Scaling
Factor

1 13 9 ... 21 16 1
2 58 13 ... 18 5 2
...

...
...

...
...

...
...

... k 1

... 1
...

...
...

...
...

...
...

N 35 9 ... 21 11 4
...

...
...

...
...

...
...

...
(j − 1)×N + 1 13 9 ... 21 16 (t((j−1)×N+1)−N [Class] + 1)%k

...
i ti%N [A1] ti%N [A2] . . . ti%N [An−1] ti%N [An] (ti−N [Class] + 1)%k j
...

j ×N 35 9 ... 21 11 (t(j×N)−N [Class] + 1)%k
...

...
...

...
...

...
...

...
(sf − 1)×N + 1 13 9 ... 21 16 (t((sf−1)×N+1)−N [Class] + 1)%k

... sf
sf ×N 35 9 ... 21 11 (t(sf×N)−N [Class] + 1)%k

Tab. 5.2: Generation of a difficult dataset

data was generated, and then detail the result of the evaluation of classifiers over
such data.

5.4.1 Synthetic data generation

The idea to generate datasets with a very low G3 measure, such that any classifier
will not be able to perform efficiently on it, and to push the scenario to the limits,
in the worst possible case. Generating such datasets can then be used to test new
classifier, or to improve existing one so that they get as close as possible to the
theoretical maximum accuracy (i.e. they only misclassify counterexamples).

To generate such datasets, it is necessary to create counterexamples, and to play
with their number to increase G3 error and lower the maximum accuracy. To get
very difficult classification datasets, we propose to start with an initial classification
relation that does not have any identical tuples, and to duplicate them, by associating
each new tuple to a different class at each duplication. This will naturally introduce
counterexamples, and their number will increase with the number of duplication.

5.4 Generation of difficult synthetic classification datasets 111

Algorithm 5: Difficult dataset generation algorithm

1 procedure GenerateDifficult (n,N, k, sf);
Input :n the number of attributes, N the number of tuples before

duplication, k the number of classes, and sf the scaling factor
Output :d a difficult dataset for classification

2 class = 1
3 relation = [N][n+1]
4 for i ∈ 1..N do
5 for j ∈ 1..n do
6 relation[i][j] = random([0:ln(N)]
7 end
8 relation[i][n+1] = class
9 if class == k then

10 class = 1
11 end
12 class + = 1
13 end
14 if A1..An is not a key ; // Check all rows are unique
15 then
16 go to line 4
17 end

18 dataset = relation
19 copy = relation
20 for i ∈ 2..sf do
21 copy = Duplicate(copy, k);
22 dataset = dataset

⋃
copy;

23 end
24 return dataset

25 Function Duplicate(r, k):
26 duplicate = []
27 for row ∈ r do
28 new[A1...An] = row[A1...An]
29 new[class] = (row[class] + 1)%k
30 duplicate += new

31 end
32 return duplicate

112 Chapter 5 Evaluating data adequacy with the predictive task

The generation strategy is illustrated in table 5.2. It requires the size N of the
initial relation, the number n of attributes of the relation, the number k of classes,
and the scaling factor sf (the number of duplication of the initial relation) used to
produce counterexamples. The strategy works as follows: let r be a relation over
R = A1 . . . An. Then:

1. Insert N unique tuples ti for i ∈ 1..N . For each tuple ti, i ∈ 1..N , add a value
for the class attribute as follows: ti[Class] = i%k. This corresponds to the
rows 1 to N in table 5.2.

2. The duplication process is repeated sf − 1 times as follows:
Let j be the current duplication, 2 ≤ j ≤ sf . The initial relation is duplicated,
generating N new tuples, numbered t(j−1)×N+1 to tj×N . For each duplicated
tuple ti, (j−1)×N+1 ≤ i ≤ j×N , the values do not change over attributes A1

to An, i.e. ti[A1...An] = ti%N [A1...An]. However, the class value is shifted by
one with respect to the previous duplicate, i.e. ti[Class] = (ti−N [Class]+1)%k

Algorithm 5 give the details of the generation process. Let us mention a few
important point not detailed here.

• First, the domain of attributes is to be defined. In table 5.2, we use integers
for the sake of clarity, but any other type of attribute would work exactly the
same. However the data types will have an impact on the classifiers, as for
example non-numerical values would require some pre-processing to be used
with most classifiers.

• The only limitation on the attribute domain is to have enough values to
generate unique rows, at least ln(N)

ln(n) values1. Using a really high number of
different values will only increase the difficulty for a classifier, as there will be
very little redundancy between the values. This is a parameter than can be
used to tune the difficulty of the classification dataset. In Algorithm 2 and the
experiments, we used ln(N) different values (see line 6 in algorithm 5.

• In addition, whenever sf > k, the dataset contains duplicates that share
the same class values, as all values for the class have already been used for
duplicates. This introduces redundancy in the data, but does not remove any
counterexample. Given the parameters of algorithm 5, it is possible to compute
the exact value of G3 for the produced dataset:

1Given |dom| different value, there exists n|dom| different vectors of size n. Therefore it is necessary
that N < n|dom| and thus |dom| > ln(N)

ln(n)

5.4 Generation of difficult synthetic classification datasets 113

Proposition 1. Let rhard be a relation generated using algorithm 5. Then:

G3(A1..An → Class, rhard) =
1 + sf−sf%k

k

sf

Proof. Let i ∈ [1..sf] denote the i-th duplication of the initial relation. While i ≤ k,
it only introduces counterexamples. Therefore, for each duplicated tuple, there are
i different classes, for each of the N original tuples. As a consequence, if sf < k,
G3 = N

N∗sf = 1
sf .

For i > k, there is redundancy for each duplicate: the duplicated tuples agree with
the ones already produced. Therefore, there are as many agreeing tuples as the
number of times i%k = 1. The size of the set of agreeing tuples therefore depends
of how many times an initial tuple is associated with the same initial class during
the sf duplications, which is exactly the quotient of the euclidean division of sf by

k, i.e N+N∗ sf−sf%k
k

sf∗N . And the result follows.

5.4.2 Experimentations

We implemented the generation algorithm, in order to measure the influence of its
different parameters. To do so, we generated datasets with different parameters,
and used ten different classifiers from the scikit-learn library [Ped+11] to estimate
their accuracy over the datasets. All results presented below are averaged over 10
different instances randomly generated using algorithm 5. The computing being
below one second, they are not discussed in this paper.

First, the influence of the number of tuples in the original relation (before duplica-
tion), was tested. The results are shown on figure 5.2a. It is worth noticing that
the accuracy is in any case really low as expected: the maximum accuracy reached
is 12%. However, as the initial number of tuples increases, so does the accuracy.
Indeed, adding more tuples introduces some redundancy among the values for each
attribute, allowing the classifier to find some sort of generalization for some cases.
But the number of counterexamples is way too high to reach good classification
measure, and G3, which is constant as the number of tuples does not influence it, is
also low: it can be seen that the model is far from reaching it.

Then, the influence of the scaling factor sf was tested, and results are presented on
figure 5.2b. As it influence G3, this measure slowly decrease with the scaling factor,
as more and more counterexamples are introduced. For this parameter, the accuracy

114 Chapter 5 Evaluating data adequacy with the predictive task

(a) Evolution of classifiers accuracy
against the number of tuples the

dataset, with respect to G3
(k = 5, sf = 10)

(b) Evolution of classifiers accuracy
against the scaling factor of the

dataset, with respect to G3
(N = 100, k = 5)

(c) Evolution of classifiers accuracy
against the number of classes in the

dataset, with respect to G3
(N = 100, sf = 10)

Fig. 5.2: Classifiers accuracy given the parameters for generating difficult classification
datasets, compared to G3

first drops, before slowly increasing with the scaling ratio. This increase starts as
soon as sf > k, as explained previously, because there is then some redundancy
allowing the classifier to make correct predictions for some tuples.

In addition, the influence of the number of classes is exposed on figure 5.2c. Once
again, G3 decreases with the number of classes, as their are more counterexamples.
As expected, the accuracy only drops with the number of classes, as the classifier has
then fewer examples for each class, and therefore fewer possibilities to find patterns
and generalize.

Finally, the accuracy of the classifiers was evaluated with respect to the error
measures G1, G2 and G3, for the functional dependency {features} → class. The
results are shown on figure 5.3. For measures G1 and G2 the accuracy drops as the
error increases, as the number of counterexamples also increases. On the opposite,

5.4 Generation of difficult synthetic classification datasets 115

(a) Measure G1 (b) Measure G2

(c) Measure G3

Fig. 5.3: Evolution of classifiers accuracy given the FD error measure of the dataset

when G3 increases, so does the accuracy, as it means that the set of tuples that would
satisfy the functional dependency is getting bigger, allowing the classifier to reach a
higher accuracy.

To summarize, these experimentations have confirmed in practice the impact of
counterexamples on the accuracy of classifiers, as they prevent the functional depen-
dency between the features and the class to be satisfied. It is now necessary to test
this approach on real datasets, in order to compare classifier’s accuracy in practical
situations, to our theoretical upper bound estimated using G3.

5.5 Taking attributes domains into account

Up until this point, we mainly considered intergers values for the feature’s domain:
they are very practical, because they fit well with crisp functional dependencies, and
allow to use the strict equality for the comparison of values. However, in real life,
there are many different possible domains. We now discuss the limitations of crisp
FDs and G3 depending on the values domain.

116 Chapter 5 Evaluating data adequacy with the predictive task

Dataset # tuples # classes Average Accuracy (%) Max Accuracy G3 (%) G3 −max
Titanic 2201 3 76.6 79.1 79.1 0.0

Breast Cancer 286 9 71.2 76.2 97.8 21.6
Abalone 4177 5 60.1 67,4 100 32.6

Adult 48842 13 81.8 86,2 99.9 13.7
Bank 4521 16 88.4 90,5 100 9.5
Car 1728 6 86 99,2 100 0.8

Contrac 1473 9 49.6 57,2 95,5 38.3
Ecoli 336 7 77.6 90,9 100 9.1
Iris 150 4 89.4 99,3 100 0.7

Led-display 1000 7 60.3 74,8 76 1.2
Lenses 24 4 74 95,8 100 4.2

wine-quality-red 1599 11 55.6 69 100 31
yeast 1484 8 52.5 63,7 100 36.3
zoo 101 16 86.5 99.0 100 1.0

Tab. 5.3: Comparison of accuracy and G3 measure over classification datasets

5.5.1 Limitations of crisp FDs

Experimental observations

After the initial experimentations on synthetic data, it appeared necesssary to test the
approach on real data. To this end, we ran experiments on well-known classification
datasets, to compare the state-of-the-art accuracy results for these datasets with
their G3 measure. The datasets and the accuracy measures come from [FD+14], a
thorough study on the accuracy of 179 classification algorithms over 121 datasets.

The results are presented in table 5.3. As expected, for all the datasets, the maximum
accuracy found by [FD+14] is always below our measured G3 value: the difference
between the two values is indicated in the last column of the table, showing some
significant differences for some datasets. For some datasets, the G3 measure is 100%,
which is reassuring, as it means that their exists a function between the attributes
and the class, and that it does actually make sense to perform classification. It is also
interesting that despite the existence of a function, the average accuracy is still very
low sometimes, such as for the Contract dataset. Finally, the Titanic and the Led
display are very interesting datasets, as their G3 measure is pretty low compared
to the other ones. Therefore it is worth questioning the interest of performing
classification on these datasets. For the Titanic dataset, the maximum accuracy is
strictly equal to G3, meaning their exists a perfect classifier on this dataset, that only
failed on tuples from counterexamples.

5.5 Taking attributes domains into account 117

X Y X → Y

0 0 1
0 1 1
1 0 0
1 1 1

Tab. 5.4: Possible outcomes for the comparability of two values for the satisfaction of a
functional dependency

These results are very interesting, as they confirm how G3 can be used to indicate to
domain experts wether or not it is worth performing classification, or if there are
simply too many counterexamples for the results to be interesting. In addition, once
a model has been trained, it is possible to evaluate the quality of classification by
comparing the obtained accuracy to the estimated upper bound.

However, these results also highlights some limitations for G3: indeed, for several
datasets, it appears that the upper bound is 100%, even though for many of them, the
average accuracy reached is far from perfect. One of the main reason is that, for the
computation of G3, we make use of the satisfaction of a crisp functional dependency:
therefore, the counterexamples retrieval is based on the strict equality, meaning
two tuples form a counterexamples only if all of the values over the features are
strictly equal, but differ on the class attribute. As a result, depending on a feature’s
domain, it can be more or less likely for two values to be equal: for continuous
values, because there is an infinity of possible values, there might not be two tuples
with the same value. This directly relates to how values our compared, and how
it impacts the satisfaction of a functional dependency. The different possibilities
are presented in table 5.4:when comparing two tuples, they are two possibilities
for each side of the FD, meaning four possibilities in total. Among these four, only
one prevents the FD from being satisfied, which is when the left-hand side is equal,
but not the right-hand one. Additionally, because of the infinite number of possible
values, when the domain of an attribute is continuous, it is less likely to be equal.
As a result, with continuous domains, there are less counterexamples. This means
that in this situation, it is necessary to adapt the evaluation of FD satisfaction for
example using non-crisp FDs, to better take into account the data. Indeed, there
are often field-specific knowledge that can be taken into account, to consider two
values as similar. It is therefore also necessary to modify how G3 is evaluated and
analyzed.

Example 14. On figure 5.5, the table presents data from a meteorological problem:
given the temperature, pressure and humidity of a place, will it be raining the next
hour? Based on this initial table, by considering crisp functional dependencies, there are

118 Chapter 5 Evaluating data adequacy with the predictive task

id Temperature Pressure Humidity Rain
t1 27.2 1004.5 98.7 yes
t2 26.5 1018.4 42.5 no
t3 15.7 1008.6 78.9 yes
t4 16.1 1016.9 76.7 no
t5 25.9 1017.5 43.8 yes
t6 28.1 1021.7 41.7 no
t7 4.1 1007.2 74.3 yes
t8 15.9 1022.3 79.1 no
t9 27.3 1019.8 39.5 no
t10 3.8 1006.7 73.4 yes

Tab. 5.5: Toy example from the problem of continuous values

no counterexamples, and therefore G3 = 100%. However, for meteorologists, there are
counterexamples, especially if the following measurement errors are taken into account:

• Temperature measurement uncertainty is ±0.5°C

• Pressure measurement uncertainty is ±1hPa

• Humidity measurement uncertainty is ±2%

Based on this, for example, tuples t7 and t10 should form a counterexamples, but are
missed because only the strict equality is considered for now.

As a result, it appears necessary to be able to take into account these continuous
values, and to propose solutions to be able to take domain constraints into account
when evaluating the satisfaction of the functional dependency.

Solutions overview

In order to deal with the problem of the continuous values for which the strict
equality shows some limits, it is possible to consider two different directions:

• Adapt the functional dependency evaluation: as part of the problem comes
from the satisfaction of the FD, it is possible to modify how the values are
compared, for example by relaxing some of its constraints. This mean using
non-crisp functional dependencies, and for example use Gs

3 instead of G3.

• Modify the data: as the other part of the problem comes from the domain of
the features (i.e continuous values), it is possible to modify the data to make it

5.5 Taking attributes domains into account 119

adequate with the evaluation of traditional FDs, for example by discretizing
the data.

Both methods require to use a similarity measure, either to group the data for the
discretization, or to relax the FD’s satisfaction. Such similarity measures have to
be reflexive and symmetric. However, for discretization, it also has to be transitive,
in order to be able to form the bins required by such technique. This additional
constraint is the main difference between the two approaches, and explains why G3

applies and can be computed when the data is discrete, but has to be adapted in the
general case.

Indeed, when the data is not discrete, the computation of G3 is an NP-complete
problem [Car+20]. Indeed, this problem is equivalent to the minimum vertex cover
(see [Son10] for the proof), a well-known problem in graphs. G3 computation can
indeed be modelized as a graph problem: let a graph G be a pair (V (G), E(G)). The
elements in V (G) are the vertices of the graph, and E(G) its edges, between two
vertices in V (G) . The size of the graph is |G| = |V (G). From this, given a relation r
and a FD, we propose to build the counterexample graph as follows:

Definition 10. The counterexample graph Gc for an FD r |= X → Y is a graph for
which:

• V (Gc) = t ∈ r

• for (t1, t2) ∈ r × r, (t1, t2) ∈ E(Gc) iff for all A ∈ X, t1[A] = t2[A] and ∃B ∈
Y, t1[B] 6= t2[B]

From this graph, computing G3 is equivalent to removing the minimal number of
vertices such that there are no edges in the graph: indeed, this means removing the
minimum number of tuples, such that there are no counterexamples.

Property 9.

G3(X → Y, r) = 1−max{|G
′| : E(G′) ⊆ E(Gc), |V (G′)| = 0, 6 ∃(u, v) ∈ E(G′)× E(G′)|(u, v) ∈ V (Gc)}

|r|

Example 15. Figure 5.4 presents such a graph for the toy Titanic dataset. The degree
of t5 (resp. t8) is 3 (resp. 2). Clearly t5 and t8 cause more counterexamples than the
others. By changing the class value for these two tuples, the number of counterexamples
drops to 1 (instead of 6).

120 Chapter 5 Evaluating data adequacy with the predictive task

t1

t2

t3

t4

t5

t6

t7t8

t9

t10

Fig. 5.4: Couterexamples interaction graph for the Titanic dataset

As a result, computing G3 is NP-complete. When the data is discrete, the values
comparison is transitive, and it is then possible to use algorithm 4 to compute it. But
it the general case, for example with Gs

3, only heuristics can be designed.

As a result, we compare the two proposed approaches, one relying on transitivity
and allowing to compute G3, and the other non-transitive.

5.5.2 Similarity-based solution

The first possibility is to compare each value of a given domain using a similarity
function. This is equivalent to relaxing the equality that is used for crisp FDs.
Because FDs have been used for many different and important problems (data
cleaning, database’s schema, query relaxing, etc), there has already been the need
to relax their constraints to better adapt to the specificities of each application. All
these alternative are grouped under the term relaxed functional dependencies (see
[Car+15] for an overview). Among all the proposed alternatives, there are two
main families of approaches:

• The first group of solutions relax the FD by allowing it to be almost satisfied:
this means that even if a few tuples form counterexamples, the FD can hold
for almost all the data. This is especially useful to allow the data to contain
some missing values, measurement errors, or outliers. Approximate func-
tional dependencies [Huh+99] are an example of such relaxed FDs. These
approaches are very related to measure G3, as it quantifies how far is the FD
from being satisfied: therefore, when a domain experts decides whether or not
the considered data is adequate for classification based on G3, she basically
decides if the number of counterexamples is small enough to say that the FD
almost holds. Therefore, our evaluation criteria is a form of approximate FD.
However, this does not solve the problem of continuous values that prevents
some counterexamples from being identified.

5.5 Taking attributes domains into account 121

• The second type of solutions aims at modifying how the values are compared,
to propose alternatives to the strict equality, in order to consider to values
as equal, based on a given criteria. Fuzzy functional dependencies [Bos+98;
RM88] are an example of such an approach, by introducing a fuzzy resem-
blance measure to compare two values of a given domain. Other approaches
propose a comparison based on an order relation, such as ordered functional
dependencies [Ng99; Ng01]. These approaches can be very interesting to deal
with the problem of continuous values, because they allow the relax the strict
equality, and to propose adequate values comparison that can be defined in
accordance with the application domain.

From all these possibilities, it therefore appears that relaxing FDs is an very inter-
esting possibility, if used to allow a new form of value comparison on the domain
values. The center of this solution relies on the existence of the similarity functions
that are necessary to compare the values of a given domain. These similarities
can be given by domain experts, if they have specific knowledge. It should also be
noted that because such similarities require to compare each pair of tuple using
the similarity function, it is most costly to evaluate the FD’s satisfaction, as there is
an exponential complexity (O(|r|2)). It should also be noted that in these case, Gs

3
cannot be easily computed: however it still possible to evaluate Gs

1 and Gs
2, and to

retrieve the associated counterexamples.

5.5.3 Transitive similarity function and discretization

Data discretization

Alternatively, it is possible to use measures that are also transitive, meaning that
all the values that are similar can be grouped together. In this case, it is possible
to discretize the data in bins of similar values, and to obtain a discrete dataset on
which it is possible to compute G3.

Once again, the biggest question is what similarity measure to use, in order to
perform a discretization that makes sense with respect to domain constraints. This
approach allows to keep exactly the same approach for the FD evaluation, and
to only transform the data once and for all. Additionally, because the number of
different values after discretization is much smaller, this mean that the number of
different tuples to compare can be reduced.

122 Chapter 5 Evaluating data adequacy with the predictive task

id Temp. Pres. Hum. Rain
t1 27.2 1004.5 98.7 yes
t2 26.5 1018.4 42.5 no
t3 15.7 1008.6 78.9 yes
t4 16.1 1016.9 76.7 no
t5 25.9 1017.5 43.8 yes
t6 28.1 1021.7 41.7 no
t7 4.1 1007.2 74.3 yes
t8 15.9 1022.3 79.1 no
t9 27.3 1019.8 39.5 no
t10 3.8 1006.7 73.4 yes

(a) Original data

id Temp. Pres. Hum. Rain
t1 1 1 4 yes
t2 1 2 1 no
t3 3 1 2 yes
t4 2 2 2 no
t5 1 2 1 yes
t6 1 2 1 no
t7 3 1 2 yes
t8 2 2 2 no
t9 1 2 1 no
t10 3 1 2 yes

(b) Discretized data

id Temp. Pres. Hum. Rain #
t′1 1 1 4 yes 1
t′2 1 2 1 no 3
t′3 2 2 2 no 2
t′4 1 2 1 yes 1
t′5 3 1 2 yes 3

(c) Reduced data

Fig. 5.5: Data reduction process

As a consequence, we propose a discretization solution that first groups similar
values together, so that they are all assigned to a unique same value: this allows
to define similarity. Second, as the number of different values is likely to be much
smaller, it is possible to "reduce" the dataset by only keeping unique rows. The
detailed process is illustrated on figure 5.5, following example 14. It works as
follows:

• First, each attribute of the original data is discretized, to group similar values.
It should be noted that this can be adapted and fine-tuned to each application,
and that specific similarity measures can be defined in this step if necessary.

• Once an attribute is discretized, each of its value is replaced by the value
representing the interval it belongs to. As functional dependencies do not care
about the order between values, the value itself does not really matter, as long
as all values in the same interval are replaced by the same new value.

• Once the data is discretized, as the number of different values for each attribute
is equal to the number of clusters, there might be identical rows in the dataset.
It is therefore possible to dramatically reduce the size of the original data, by
only keeping unique rows, and adding an additional attribute to memorize
how many times this row appears in the clustered data. This step allows to
reduce the number of necessary comparisons to evaluate the satisfaction of the
FD X → C: if n is the number of tuples in the relation, n∗(n−1)

2 comparisons
are necessary: the smaller the n, the faster the evaluation.

To perform this process, we propose algorithm 6: the clustering process is described
from line 3 to 9, and the data reduction is performed on line 12.

5.5 Taking attributes domains into account 123

Algorithm 6: Discretization and reduction algorithm

1 procedure Reduce (r) over attributes A1..An;
Input : r the classification dataset
Output :A discretized and reduced dataset of integers

2 d = []
3 for A ∈ {A1..An} do
4 if A is continuous then
5 intervals = discretize(r[A])
6 d[A] = intervals
7 else
8 d[A] = r[A]
9 end

10 end
11 d[class] = r[class]
12 rreduced =Select A1 . . . An, C, count(∗) as ′#′ From d Group By A1 . . . An, C
13 return rreduced

Example 16. In the reduced dataset given in table 5.5c, let us consider the counterex-
ample (t′2, t

′
4) of the functional dependency Temp, Pres, Hum→ Rain. Using table

5.6b, it concerns in fact 4 tuples: t2, t6, t9 and t5 (cf previous example). It is then
possible to go back to the original data in table 5.6a to see what does that mean on the
real values. For example, values 〈25.9, 1017.5, 43.8〉 of t5 and values 〈28.1, 1021.7, 41.7〉
of t6 are considered similar and then, both tuples form a counterexample.

In this data-centered process, it is still necessary to be able to define a strategy for
the data discretization: however, it is possible to use existing techniques to propose
the best discretization, for example clustering algorithms.

Impact of discretization on dataset size

The main advantage of the discretization is the reduction of the number of tuples,
that allow to perform less comparisons to identify the counterexamples. In order to
validate this, we performed experimentations to validate this data reduction, and to
validate the impact on the time necessary to retrieve the counterexamples.

We first looked at how the data is reduced. We took the 4 biggest datasets from table
5.3, and computed their reduction ratio, when applying our algorithm. defined as
follows:

ratio = |r|−|rreduced|
|r|

124 Chapter 5 Evaluating data adequacy with the predictive task

Dataset # tuples before #tuples after reduction ratio
Titanic 2201 24 98.9%

Abalone 4177 242 94.2%
Adult 48842 10176 79.2%
Bank 4521 4031 10.8%

Tab. 5.6: Reduction ratio for some datasets from table 5.3

Where rreduced is the reduced dataset.

To perform the discretization, we used the k-means clustering algorithm, coupled
with the the silhouette coefficient [Rou87] to determine the most appropriate number
of clusters for each attribute. The results are presented in table 5.6. It shows that the
ratio differs from one dataset to another, with some very significant drops for some
datasets such as Titanic, indicating their must be many redundant values. We then
evaluated how well the data reduction technique improves the counterexamples
retrieval time, to see how the approach would scale on large datasets. We evaluated
it on astrophysical data from the Large Synoptic Survey Telescope2 containing
500000 tuples over 25 attributes. For different sizes of datasets, we compute:

• The reducing ratio

• The computation time for counterexamples retrieval on the original data.

• The computation time for counterexamples retrieval on the reduced data.

The results of these experimentations are presented on figure 5.6. The first obser-
vation is that on the original data, the computing time is quickly too long even
on relatively small instances. On the opposite, on the reduced data, it increases
very slowly with the number of tuples, allowing for a reasonable time for retrieving
the counterexamples. This is tightly linked with the reducing ratio, that increases
significantly with the number of tuples: the more tuples there are, the more the
original data is reduced with respect to its original size.

On datasets on which our approach would not be sufficient to scale, it is always
possible to apply blocking [Bil+06] or parallelization [Chu+16], but such solutions
have not been considered in the context of this thesis.

2https://www.lsst.org/

5.5 Taking attributes domains into account 125

https://www.lsst.org/

Fig. 5.6: Validation of G3 computing time, on both original and reduced data, in parallel
with the reducing ratio

5.5.4 Choosing the best solution

We have presented two different approaches, one modifying the evaluation of the FD,
the other modifying the data. The question is therefore to decide which one to chose.
There is of course no simple answer, as this decision should mainly be guided by the
domain application, and the size of the dataset. Indeed, as the tuples comparison is
the main bottleneck of the evaluation of the FD, the data discretization is an inter-
esting solution to reduce the number of tuples, and to therefore be able to evaluate
the satisfaction of the FD in a reasonable amount of time. Additionally, discretizing
the data is a solution to take into account regression dataset, by discretizing the
values to predict, the problem being then equivalent to a classification one. On the
opposite, relaxing the FD satisfaction is an interesting solution if similarity measures
have been defined that do not allow discretization, for example because they have
to be evaluated on the fly during the tuples comparison.

Finally, if such solutions are interesting because they allow to get more counterexam-
ples, that make more sense with respect to the application domain, the counterpart
is that the link between G3 and the accuracy’s upper bound is lost: indeed, the proof
from algorithm 2 does not hold, because it is not possible to predict the behavior of
any classifier when the features are not strictly equal. Therefore, the data and the FD
evaluation should not be changed if the domain experts really wants an upper bound
on the initial data. Alternatively, the upper bound can be estimated on the original
data, and the counterexamples retrieved on the transformed data: indeed, G3 in

126 Chapter 5 Evaluating data adequacy with the predictive task

itself is usually insufficient, and the counterexamples are extremely informative for
domain experts. Such counterexamples can be used to better understand G3, and to
better decide the strength and weaknesses of the dataset for the considered classifi-
cation task. Ultimately, if data selection has to be refined, the counterexamples are
the key to understanding what is wrong with the current data, and therefore what
should be modified: such problems are discussed in the following sections.

5.6 Understanding the model’s limitations

5.6.1 Importance of counterexamples

As mentioned previously, there are several situations for which measure G3 is not
sufficient to assess the adequacy of a dataset for a classification task:

• If measure G3 is too low, then it is necessary to understand why there are so
many counterexamples, in order to perform a better data selection if possible.

• If the link between G3 and the accuracy is lost because the data had to be
modified to compute a more coherent G3, then it is necessary to look at the
counterexamples, in order to check if they really are counterexamples with
respect to the domain constraint, so that an informed choice can be made.

But even outside these specific situations, analyzing the counterexamples is an
important exercises, with many potential benefits for the classification process. The
counterexamples are very important to understand the value of G3, to see the data
that causes conflicts and lowers the accuracy of the classifier. Thus, by looking at
them, a domain expert can seek an explanation to their presence in the dataset, and
eventually remove them to improve the classification results. The counterexamples
are a powerful notion to avoid the domain expert from being overwhelmed by the
data when exploring a dataset, as she then only have a small but meaningful subset
of tuples to study.

As a result, the counterexamples are a perfect starting point for a discussion between
data scientist and domain expert: the first can use the counterexamples to better
explain the limitations of the predictive model on the consider data ; the other can
explore more easily the dataset by only accessing the data that causes conflicts, and
can therefore better point out relevant information on the data, that can be used to
refine the data selection, or to better understand the model.

5.6 Understanding the model’s limitations 127

Fig. 5.7: LeaFF page for the configuration of the classification dataset

In this context, even if no additional data selection is performed, it appears nec-
essary to look at the counterexamples, to gain a better understanding about the
predictive model. The counterexamples help domain experts to better understand
the limitations of such models, because they will be aware of the contradictions it
has been trained on. This is beneficial, as some of the future misclassifications of the
model might be explained by the counterexamples the model has been trained on:
as a result, this removes part of the "black-box" aspect of the model, by showing that
some of its mistakes simply come from the data it has been trained on. Additionally,
being aware of the limitations of the considered model can help to perform better
data selection for the training of other future models.

5.6.2 Leaff: a system for counterexamples exploration

Based on these considerations, and the importance for domain expert to explore
their counterexamples, we developed a web application that can be used for the
exploration of counterexamples. This application if named LeaFF, for "Learning
Feasibility using Functional Depedencies". It was developed using React3 for the
frontend, and Python 3 and Flask4 for the backend.

Leaff has two main functionalities:

3https://reactjs.org/
4http://flask.pocoo.org/docs/0.12/

128 Chapter 5 Evaluating data adequacy with the predictive task

https://reactjs.org/
http://flask.pocoo.org/docs/0.12/

Fig. 5.8: LeaFF page for the exploration of counterexamples

• The first one is presented on figure 5.7: this page can be used to load a
new classification to analyze. In addition, if the considered dataset contains
continuous values, they can be discretized, by specifying the number of bins to
produce for each column to discretize.

• The second and most important page is presented on figure 5.8: this is the page
used to retrieve and explore the counterexamples. The interface on this page is
divided in two zones. The first one on the left is, like for ExplIQuE (see section
4.6) a simple SQL editor: it can be used to explore the dataset using SQL. Once
the counterexamples have been retrieved from the considered data, they are
stored in a relational table, and can also be queried. The second part of the
interface, on the right, is the one to be used to specify what are the features
and what is the class to consider in the dataset: once they have been entered
by the domain expert, she can ask to assess the feasibility of classification over
the dataset. To this end, measures G1, G2 and G3 are computed. Finally, the
counterexamples are retrieved, and presented in a table.

Using LeaFF, it is therefore possible to obtain all the primary necessary information
on the dataset to assess its adequacy with the classification task. Additionally, it is
possible to propose some additional functionalities to simplify the exploration of
counterexamples. First, since they are stored in a relational database, it is possible
to query the counterexamples tables, therefore allowing to order them, select only
part of them, etc. Indeed, for large datasets with many counterexamples, it appears
necessary to allow the domain experts to explore these counterexamples by reorga-
nizing the way they are presented: using a SQL query, they can implement filters to

5.6 Understanding the model’s limitations 129

Fig. 5.9: LeaFF visualization of counterexample’s for the real Titanic dataset: each green
node is a tuple, and two tuples are connected if they form a counterexample

directly select the counterexamples of interest. Alternatively, the counterexamples
can also be dowloaded in a csv file, to process them externally. It is also possible to
display the counterexample graph for the considered relation and FD. The degree
of a node indicates the number of counterexamples it is involved in, and is a first
criterion to sort out the tuples to focus on. Such representations are really interesting
to better understand and explore the counterexamples, because they allow to better
grasp the interactions between the tuples. Moreover, this can be used to refine the
data selection, for example by removing the tuples that are at the center of many
counterexamples. An example of such a visualization offered by LeaFF is given on
figure 5.9, for the real Titanic dataset: it clearly show clusters of counterexamples,
usually centered around a few tuples. This visulization is interactive, as the user can
drag the nodes of the graph to reshape a cluster, and get information on each node
by pointing the mouse on it: it is therefore useful to understand what is the data
behind each node.

5.6.3 Case study: prediction of the ageing of refrigerated vehicles

The approach developed in this section was tested on real data, during a collabora-
tion with Cemafroid, a french company issuing attestations for refrigerated transport
vehicles. We will now develop the lessons learned from this study.

130 Chapter 5 Evaluating data adequacy with the predictive task

Context

CEMAFROID5 is a company with a french delegated public service, delivering
conformity attestations of refrigerated transport vehicles. The main objective of
these vehicles is to supply consumers with good quality and safe perishable products.
In this context, CEMAFROID offers testing and calibration services, and has been
designated as an approved body for issuing conformity attestations for refrigerated
transport vehicles. One of the main characteristics of these vehicles if their "insulation
coefficient", denoted by K, that evaluates well the vehicle is at preventing heat
gain from the outside of the refrigerated enclosure. This coefficient is therefore
very important, and may be controlled as required by the ATP (the international
Agreement for the Transport of Perishable foodstuff). The lower the K coefficient
the better, but due to the ageing of the vehicle, it increases over time. To control it
and allow the vehicle to continue to transport perishable food, its thermal insulation
is measured again after 12 years of service. The ratio between this value and the
initial value allows too define the ageing of the vehicle.

To explain the variability in the ageing of refrigerated vehicles, several studies have
looked at the problem to identify factors to explain it, and propose physical models
for the ageing. [Cap+19] presented the factors playing a role in the ageing process.
As stated by [Pan+95], the ageing of an insulated enclosure for a refrigerated vehicle
is mostly due to the permeability of the foam to the gases, to the condensation of
water into the foam cells and to the increase of the percentage of the broken
cells. Ageing of refrigerated vehicles also has a mechanical component due to the
movements on the road, the routes covered and the payload. A simple statistical
analysis carried out in [Pan+99] highlighted the influence in the ageing rate due to
the rails and to the refrigerating units.

But whereas all these studies rely on physical models to analyse the problem, the
amount of data recorded on the refrigerated transport vehicles, makes it possible to
build a predictive model, using machine learning techniques: such a new approach
is a way to tackle the problem from a different angle, to possibly identify new causes
for the ageing of vehicles, and to confront new results to the one obtained with
physical models. Shifting from a physical to a numerical model is indeed a big
change of paradigm, especially for the domain experts that mainly design and work
with physical models. In this context, it was therefore important to be able to explain
the performances of the trained model, and to analyze what were its limitations. To
this end, we proposed to carry an analysis of the counterexamples in collaboration
with Cemafroid’s experts.

5http://www.cemafroid.fr/

5.6 Understanding the model’s limitations 131

http://www.cemafroid.fr/

Data selection

The ageing of a refrigerated vehicle used in the carriage of perishable foodstuffs
is quantified through the evolution over the time of the K coefficient. The French
Regulation requires that this coefficient is measured for all the in-service vehicles
after twelve years of service. As a result, the ageing evaluation may be made by
comparing the K coefficient value of the in-service vehicle at the twelfth year of life,
K12 to the initial K value of the prototype equipment, Kp, through their ratio:

ageing = K12
Kp

To predict this ageing, thermal engineers had access to the Datafrig® database,
that records data for the attestations of refrigerated transport vehicles. At 31
December 2017, based on the Datafrig® data, the French fleet counted 110 000
refrigerated transport equipment with a valid ATP certification. These equipments
are divided into different categories, the main ones are: vans (vehicles with a total
weight allowed in charge smaller than 3.5 tons), trucks (vehicles whose total weight
allowed in charge varies from 3.5 to 29 tons) and semi-trailers (vehicles with total
weight allowed in charge higher than 29 tons). The Datafrig® database is managed
by Cemafroid and contains all the ATP in-service equipment in France.

The data selection for the ageing prediction from Datafrig® was performed by
Cemafroid, and only a very small subset of the database was selected: only 1158
highly curated data has been extracted from the 109 122 refrigerated equipment
registered in the Datafrig® database. These 1158 data represent different in-service
vehicles of different firms, tested after twelve years in the laboratory of Cemafroid.
The selection criteria for the sample of 1158 vehicles were based on data quality
requirements for the available data: no null values, no outliers, and no duplicates. It
clearly appears that these simple criteria drastically lowered the number of tuples.
We had to deal with this very limited number of tuples, because the data was
processed by an external service provider, and we therefore did not have the control
on the data selection. It was therefore not possible to ask for the query performing
this selection, and we were not able to have access to more data.

For each of these vehicles more than 80 features are known. Ten of the most
important features were selected by Cemafroid’s experts, including the type of
vehicle, the body manufacturer, the nature of the refrigerated enclosures and their
isolation, the use of the vehicles and the different types of transport to which
they may be subjected. Most of the available features are therefore categorical. A
statistical analysis of this dataset is available in [Cap+19].

132 Chapter 5 Evaluating data adequacy with the predictive task

Classification model

Before studying the feasibility of classification using the available data, a first
classification model had been built, by dividing the ageing into two classes: low (≤
0.36) or high (> 0.36). This dicretization was done in collaboration with Cemafroid,
based on the distribution of the ageing values.

Based on this, a first model had been built, using a decision tree [Bre17], in order to
obtain an interpretable model, that could easily be discussed with thermal engineers.
To improve the results, a boosted version of the algorithm (see [Sch90]) was used.
The results were very encouraging, with a precision of 0.81 and a recall of 0.78 for
the high ageing, which is the class of importance, as it is important to detect it early
to anticipate maintenance issues. Additionally, the overall accuracy of the classifier
was 0.69, which leaves room for improving the model.

As a result, before trying to improve the model itself, we decided to explore the
classification dataset, and to explain its limitations the the domain experts, based
on the satisfaction of the functional dependency between the features and the class.
The purpose was to:

• Help Cemafroid’s experts to better understand the limitation to the model’s
performances: is the obtained accuracy satisfying with respect to the available
training data?

• Explore the counterexamples, and see if they could be explained by domain
experts: in other terms, does the existence of such counterexamples make
sense with respect to domain constraints?

• Try to find solutions to remove the most problematic counterexamples in the
data selection phase, to be able to build more robust models in future works.

Counterexamples exploration

Using LeaFF, the classification dataset was analyzed to discuss with the experts. A
toy sample of counterexamples is presented in table 5.7. For sake of clarity, only five
attributes are represented in this example. Each line represents a counterexample,
which is two tuples. As they both share the same values over the classification
features, only the ageing column, on which they differ, is represented for both(Ageing
t1 and Ageing t2).

5.6 Understanding the model’s limitations 133

id Manufac-
turer

Cell
Type

Insulation type Vehicle
type

Products Ageing t1 Ageing t2

1 Firm 1 Integrated Polyuréthane Truck Meat High Low
2 Firm 2 Integrated Polyuréthane with

cylopentane
Van Fruits High Low

3 Firm 3 Rapportee Polyuréthane with
cylopentane

Panel truck Frozen
food

High Low

4 Firm 4 Integrated Polyuréthane with
cylopentane

Trailer Vegetables High Low

5 Firm 5 Rapportee Polyuréthane with
cylopentane with-
out CFC

Truck Cheese High Low

6 Firm 6 Rapportee Polyuréthane with
cylopentane

Remorque Dairy prod-
ucts

High Low

Tab. 5.7: Subset of counterexamples from the classificationd dataset, on the ageing of
refrigerated transport vehicles.

In addition to the counterexamples, we started by computing the three main metrics
for the satisfaction of the FD between the features and the class. The proportion of
counterexamples, G1 = 9.02%, is low, showing that the pairs of tuples in the dataset
are not a big proportion. However, as G2 = 100%, all tuples from the dataset are
involved in at least one counterexamples: this is likely because a few tuples are in
conflicts with almost all the other. This is confirmed by measuring G3 = 86.73%:
this shows that to obtain a counterexamples-free dataset, the vast majority of the
data can be saved. Additionnaly, it shows that G3 is much higher than the obtained
accuracy on the first model (69%): as a result, there are two possible actions to
improve the performances of the model: remove the counterexamples to improve
G3, and improve the model’s parameters to get the accuracy closer to the theoretical
upper bound.

We then moved on to the analysis of counterexamples with Cemafroid’s experts:
we simply retrieved the list of counterexamples, and examined some of them when
they appeared important to the experts. Based on the discussion that followed, it
appeared that the presence of counterexamples in the dataset could be explained by
several causes, that can be organized in the following categories:

Dirty Data A considerable amount of time had been spent on preparing and cleaning
the dataset in order to use it for classification. However, when looking at
counterexamples, it appeared that some tuples contained data that appeared
to be incorrect. For counterexample 1 in table 5.7, it appeared that the
vehicle with a low ageing was actually a van instead of a truck. Similarly, for

134 Chapter 5 Evaluating data adequacy with the predictive task

counterexample 2, the vehicle with a high ageing actually transported meat
instead of vegetables. Such counterexamples are easy to fix by correcting
the wrong values. Alternatively, it is possible to take into account additional
attributes that are more precise than the dirty ones: for example, the weight of
the vehicle can better define the vehicle’s type than the given label, so mistakes
can be avoided if it is taken into account: with the weight, vans and trucks
could be more easily differentiated.

Missing information For other counterexamples, it appeared that the attributes
selected for classification were not enough to explain their existence. How-
ever, other attributes, that had not been kept for classification, allowed to
discriminate between the two tuples involved in the counterexample. For
instance, in table 5.7, counterexample 3 can be removed if the number of
food cases in the vehicle is considered. For counterexample 4, a specific char-
acteristic of the cooling unit differed between the two tuples. As a result,
taking those additional attributes, that at first had not been considered rele-
vant for the classification, allowed to remove counterexamples, that will then
improve the classifier’s performances. This is a way to do feature engineering
in collaboration with the domain experts.

Human Factor Finally, for a last group of counterexamples such as number 5 and
number 6 from table 5.7, it appeared that the only explanation was a human
factor, such as how the driver operates the vehicle. Indeed, this is susceptible
of influencing the ageing of the vehicle, but it is hard to quantify, and may pose
ethical issues. As a result, this last class of counterexamples is very difficult to
fix, as data cannot be cleaned or completed. However, being aware that such
counterexamples exist helps the data expert in understanding the limitations
of the classification model. Finally, it also indicates other values that could be
interesting to record: in this case for example the average speed of the vehicle.
Similarly, during its life, the vehicle is subject to accidents of which nothing is
known. Information about the nature and severity of such accidents could be
useful for the study of ageing, and could also explain some

This categorization of counterexamples is very interesting: it allows to better un-
derstand what can be improved in the data recording process to produce less
counterexamples in future classification datasets, but also show that in the consid-
ered one, some counterexamples can already be removed. However, further test
were not conducted for the classification model, as it was then decided to build
regression ones, to obtain more precise values for the ageing of the refrigerated
vehicles. Moreover, because of many missing values and the low number of available

5.6 Understanding the model’s limitations 135

tuples in the study, it was not possible to compare exactly the models produce later
on, because they were not trained on the exact same features.

Take-away lessons

The exploration of the counterexamples from Cemafroid’s classification dataset was
a very enriching experience, that created fruitful discussions and results. First, the
counterexamples allowed to identify limitations in the dataset, and to take concrete
actions to get higher quality data, and therefore improve the results for a future
new model. The counterexamples are a powerful notion to avoid the domain expert
from being overwhelmed by the data, as she then only have a small but meaningful
subset of tuples to study. The counterexamples are therefore a perfect starting
point for a discussion between data scientists and domain experts: while the first
gain knowledge on data they are not expert on, the others can point out important
information more easily. The counterexamples are a way for domain experts to
read a concrete information that have an impact on their day-to-day work. By
helping to clean and improve the dataset, domain experts stay in the loop, and better
understand the data used in the learning process. Last but not least, they gain some
evidence regarding whether or not it makes sense to infer a numerical model from
their data. Despite its simplicity, this study also shows that in classification, it is not
possible to ignore the field reality, and to only see the problem as a matrix of data:
the physical model is as important as the data itself, and bridges have to be built
between physical and numerical models.

This study with Cemafroid was interesting, mainly because it showed the interest
of the counterexamples to better understand how the selected data impact the
quality of the classifiers. However, because we did not have the control on the initial
data selection, it was not possible to go further, for example by considering other
refrigerated transport vehicles, or by modifying the initial query that is handle by
the external service provider.

In the next section, we will discuss what can be done, starting from the counterex-
amples, to improve the data selection, for the cases in which it is possible, contrary
to our collaboration with Cemafroid.

136 Chapter 5 Evaluating data adequacy with the predictive task

5.7 Data contextualization

Until now, we have seen how to evaluate the adequacy of a classification dataset with
the predictive task using emasure G3, and how to use the counterexamples related
to this measure to better understand a predictive model limitations. This steps are
important and necessary, because they allow to decide if the considered data is
acceptable, and if the obtained model can be used for the considered application.
But if the answers to this question is negative, then the natural question is: what
to do next? What can be done to select data more appropriate for the considered
classification problem?

5.7.1 The contextualization problem

As mentioned previously, when training a predictive model on a dataset, it relies
on the assumption that there exists a function from the features to the class, that
the model is trying to approximate. Because of noisy data, outliers, etc, there can
be some counterexamples that do not allow the data to perfectly follow a function,
but it is acceptable as long as these counterexamples are a minority, and this can
be evaluated using measure G3. The existence of such a function is also important
because in many applications, the predictive model is a way to approximate a
function that has a concrete reality: for example to predict physical phenomenon,
there often exists an underlying physical equation/modelization, that the predictive
model is trying to infer from the data: as a result, if the training data does not follow
a function, then it is likely not representative of the underlying function that should
exists in reality. In this scenario, it is therefore necessary to identify the data that is
the most representative of the phenomenon that the predictive model is trying to
grasp: as a result, the data selection should be refined to select the data that is the
most coherent with the classification problem, in order to build a model that follows
a function that is as close as possible to the phenomenon being modeled.

As a result, when a dataset does not appear to be adequate with the considered
classification problem, it appears necessary to refine the data selection to obtain
tuples that better fit the problem. The question is therefore to define what is the
data that is the most appropriate to model the considered problem? We refer to
this problem as contextualization, as among all the available data, the problem is to
select the subset that correspond to a coherent context, which is the one in which
the classification problem takes place. As a result, a context is described with respect
to an initial set of available tuples r, by the number of tuples it selects from r, and

5.7 Data contextualization 137

by its proportion of counterexamples. Contextualization corresponds to identifying
the context that is the most coherent with the task at hand, and therefore to refining
the data selection until having the adequate data. This contextualization problem
can seem as a simple problem at first hand (mainly data selection), but turns out to
be a nightmare in practice. Identifying the appropriate data is clearly not an easy
task, and depends on the final objective for the classification model.

From a theoretical point of view, this problem appears clearly related to measure
G3. If we refer to the definition of this measure, then the subset of tuples s from the
available data in r is the biggest possible number of tuples that does not contain any
counterexample:

max({|s||s ⊆ r, s |= X → Y })

Indeed, such a subset s allows to select as many tuples as possible without introduc-
ing any counterexample: this way, it guaranties that there exists a function from X

to C. However, from a practical point of view, this approach reaches its limits, for
several reasons:

• It is true that there should be as few counterexamples as possible: however,
removing all of them might not make sense with respect to the domain’s reality,
because real data is likely to contain outliers, noisy data, etc, that can make
sense in a given context.

• Such an approach is difficult to explain to domain experts, because there
is no concrete explanation for the removal of the tuples, other than "it was
in a counterexample": this is a local explanation that can be given for each
tuple, but there is no overall explanation to describe the subset of tuples in
the obtained context. Therefore, it does not allow to describe what are the
characteristics of the removed tuples (or of the selected one), meaning a
context cannot be described with more elements than its size with respect to
the initial relation.

From these two observations, it appears that contextualization should be able to
remove counterexamples but also explain why they are removed, in order to be able
to describe the context with respect to some characteristics: this way, the context
can be understood and analyzed by domain experts, that can assess whether or not
they make sense with the domain constraints. In addition, if the contexts can be
characterized, then it means that these characteristics can be used to reperform the
data selection even if the initial set of available tuples is modified.

138 Chapter 5 Evaluating data adequacy with the predictive task

Fig. 5.10: Overview of the solution proposed to contextualize a classification dataset

As a consequence, we developed a methodology to characterize and select a context
to refine a data selection, to make it more coherent with the considered classification
problem. This methodology, that aims at keeping domain experts in the loop of the
data selection, is presented in the following section.

5.7.2 Data selection of a context for classification

Methodology

The philosophy of the proposed methodology is to remove several counterexamples
at a time, and to be able to characterize the ones that are removed. This way, G3

can be improved over the classification datasets, and the removed counterexamples
can be characterized. The selection conditions used to remove groups of counterex-
amples can also be used by domain experts to determine if such conditions make
sense with respect to their domain constraints.

To contextualize a dataset, we therefore propose an iterative approach, that is
summarized on figure 5.10. The process starts with an initial classification dataset.
Then, G3 is computed, and a classifier is trained and tested, to obtain an accuracy
measure: this is a first indication to see if the classification feasibility is satisfying,
and if the initial model’s performances are far from our theoretical upper bond. If the
measures are satisfying for domain experts, then it is not necessary to contextualize

5.7 Data contextualization 139

the considered dataset. In the opposite case, the counterexamples are retrieved from
the dataset.

Starting from the counterexamples, the objective is to identify filters that can be
applied to the considered dataset, so that they remove the tuples that cause too
many counterexamples. The key is to find balance between removing regions of
the data while keeping enough tuples and to improve G3 and the accuracy. This
filters can be seen as some sort of extensions from chapter 4, in the sense that they
should help to reduce the selected data, by identifying pertinent selection conditions,
that make sense with respect to the considered problem. They are therefore a way
to refine the data selection by continuing the work of extensions outside of the
database.

Context aware data selection

To define what tuples should be removed to define a context that is more coherent
with the considered classification problem, we propose a two step process:

1. Identify the counterexamples to remove

2. Characterize these counterexamples to define the selection clauses to remove
them. We call such selection filters, as they are use to filter the counterexamples
from the data to consider for classification.

Such filters that can be applied to the dataset, to remove tuples and thus lower
the number of counterexamples in the dataset, therefore improving G3. It is then
necessary to design these filters. Ideally, they should remove as few tuples as possible,
while removing as many counterexamples as possible. Sometimes, removing only
one tuple might remove many counterexamples if the tuples was in conflict with
many other tuples, that are in themselves only involved in one counterexample, as
explained in example 15. We define the filters as follows:

Definition 11. A filter F over a relation r to contextulized is a cunjunction of selection
predicates, such that:

F = σc1∧...∧cn

where ci is an atomic formula, for every i ∈ 1..n

Applying the filters, we there obtain a new relation rF
c :

140 Chapter 5 Evaluating data adequacy with the predictive task

0 10 20 30 40 50
0

2

4

6

8

·10−2

Removed by
contextuali-

zation

Feature A

Pr
op

or
ti

on
of

co
un

te
re

xa
m

pl
es

(%
)

(a) Counterexamples proportion for each
value of a given feature

0 10 20 30 40 50
0

2

4

6

·105

Feature A

N
um

be
r

of
tu

pl
es

(b) Histogram of values frequency for a
given feature

Fig. 5.11: Toy example for filter design

Definition 12. Given a relation r, rF
c is the result of the contextualization of r by filter

F :

rF
c = σc1∧...∧cn(r)

Defining the filters to remove the tuples that cause too many counterexamples is a
problem for which many solutions could be considered: algorithms could be defined
to remove automatically, arbitrary cuts could be made, etc. Our main objective is to
involve domain experts in the loop, as they are the most aware of the context they
are looking for in the data.

We therefore consider easily interpretable filters, in the form of conjunction of
conditions that are then applied to the dataset. These filters should define, in simple
terms, regions of the dataset that contain more counterexamples that others, while
not representing many tuples in the dataset: this is a form of anomaly detection based
on counterexamples. This can be performed using visualization, that for each feature,
propose histograms showing the distribution of values among counterexamples, and
the number of tuples that have a given value. The histogram can then be used
to identify values that, on a given feature, have few tuples that are involved in
many counterexamples. The filters can then integrate a condition removing such
values from the dataset. Visualization are usually very useful because they can be
understood easily, and such filters are interpretable by domain experts, that can
refine them using there domain knowledge, and analyze whether or not these filters
make sense with the desired context.

Example 17. Figure 5.11 presents an example of visualizations involving tuples and
counterexamples, to show how they can be used to define filters. For a given feature

5.7 Data contextualization 141

A, figure 5.11a shows for each different value taken by this feature, the proportion
of tuples involved in counterexample, and therefore how much they contribute to the
value of G3. Figure 5.11b shows the number of tuples that take a a given value for the
considered feature. By comparing these two visualizations, it appears that there is a
zone that does not contain many tuples, but that is involved in many counterexamples.
As a result, one condition for a contextualization filter could be to remove all tuples for
which A ≥ 15 and A ≤ 25. This allows to obtain an interpretable filter, that does not
remove too many tuples, but improves measure G3. Similar work can be performed for
each feature of the dataset, creating a filter that is a conjunction of conditions over all
features.

5.7.3 Case study: predictive maintenance for helicopters

To test the contextualization methodology, we had the opportunity to use it during
a collaboration with Airbus Helicopters (AH), a company for which the contex-
tualization problem is central for many predictive models. We will now present
AH problems, and detail how we applied our contextualization solution to their
datasets.

Predictive models for AH

AH is a company providing civil and military equipment in more than 150 countries
around the world. For systems as complex as helicopters, predictive maintenance
is critical, as ensuring safety is the first concern. AH is therefore dedicated to
anticipating any failure as soon as possible. It has indisputable safety benefits as well
as a significant economic impact, of high value for AH customers: they can plan any
necessary maintenance operation ahead of time, order replacement part in advance,
adapt mission planning, avoid last minutes cancellations, etc. From a mechanical
perspective, early failure detection of one component can also prevent damaging
to neighbouring parts. In this context, an important part of predictive maintenance
solutions proposed by AH rely on predictive models, to be able to anticipate failures
and to predict any incident beforehand.

As most of medium and heavy helicopters are equipped with flight recorders that
record hundreds of parameters, there is a large volume of available data to build
such predictive models: over the last decade, AH has gathered data on hundreds of
thousands flight hours, over hundreds of helicopters operated by different customers
worldwide, on many different types of missions. To face such a huge amount of data,

142 Chapter 5 Evaluating data adequacy with the predictive task

a Big Data platform has been deployed at AH to enable the storing and processing
of large quantities of data [Mec+19]. All the data used for the predictive models of
AH is selected using this platform.

AH made the choice to produce a specific type of predictive models, named digital
twins: such model are used as virtual sensors, to predict a value that is also measured
by a physical sensor, and an alert is raised is the difference between the real and
the predicted value is to high. Such digital twins are therefore devised to model the
normal behavior of different helicopter’s systems and to identify as soon as possible
small variations on core physical sensors.

In this context, and for AH predictive models, contextualization of the training
dataset is very important: helicopters go through many different flight phases
captured in the data, and only a subset of them is usually relevant for a given model,
as they are the only one for which the laws of normal behavior of the system can
apply. It is therefore necessary to identify the correct context for the considered task,
which is the subset of data corresponding to the desired phases on which the model
is applied. In the specific application to helicopters, contextualization therefore
consists in determining the flight phases where considered parameters have lesser
variability and are less subject to pilot maneuvers as well as to external parameters
not recorded by the system. Additionally, helicopters are systems governed by
physical laws, that apply only in specific contexts: the purpose of predictive models
is therefore to produce outputs coherent with the physical laws governing the
systems on which they are applied. To this end, these models have to be trained on
data consistent with the physical model they represent. For all these reasons, AH
already has to perform contextualization before being able to produce predictive
models: this crucial step is usually dealt with by relying on experts knowledge who
specify how to filter flight data.

During our collaboration with AH, we therefore applied our own contextualization
methodology, in order to assist AH experts in the contextualization of their dataset,
by providing a more systematic process, and to provide a solution that takes the
predictive task into account. We will now detail the classification dataset on which
we worked with AH, and the results that came out from this study.

Flight data from helicopters

The data generated by helicopters is recorded continuously during each flight, and
transferred to be processed by the different AH services. This data is used to develop
the virtual sensors, that aim at monitoring the aircraft health and usage. Virtual

5.7 Data contextualization 143

Baseline Filter 1 Filter 2
Dataset # tuples accuracy # tuples accuracy # tuples accuracy
Raw 1969533 53.97% 607248 57.28% 468630 61.71%
Expert-contextualized 541342 73.94% 281947 76.02% 100165 78.61%

Tab. 5.8: Accuracy of random forest models on the oil pressure datasets

sensors use the historical flight data to learn a predictive model (estimator) for a
given parameter. This model is used to predict what the parameter value should be:
this prediction is compared to the one given by the physical sensor measuring the
actual value. If the difference between the virtual and real values is too significant,
then the aircraft is not behaving according to its normal state, and a alert is raised to
indicate the problem. An example of such a virtual sensor has been proposed by AH
for the oil pressure of the helicopter Main Gear Box (MGB) [Dao+19]. We used the
data from this virtual sensor to test our contexutalization approach, and to compare
it to the one that was done manually on the initial AH study. Indeed, for this sensor,
a first contextualization had been done by AH domain experts, identifying some
stable flight phases based on their domain knowledge.

Based on this study, we were able to use and compare two different dataset, giving
us a baseline against which the G3-based contextualization can be compared, but
also two datasets on which we can try our methodology:

Raw dataset It corresponds to the flight data without any contextualization, for a
given period of time, randomly mixing tuples from several flights.

Expert-Contextualized dataset It is a subset of the raw one: it contains tuples
filtered by AH experts (around 50% of the raw data). The context corresponds
to stabilized flight phases, during which the helicopter altitude, speed and
direction are maintained around restricted values.

Both datasets share the same 10 features chosen by experts. They include aircraft
speed, altitude, etc, in addition to the MGB oil pressure to predict. All those features
are continuous values, but have been discretized based on AH experts. The same
discretization process was applied to the two datasets, so that the raw and expert-
contextualized data are discretized in the same manner. All the results are therefore
presented on the discretized data.

144 Chapter 5 Evaluating data adequacy with the predictive task

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

200

400

600

Proportion of counterexamples

N
um

be
r

of
fli

gh
ts

Fig. 5.12: Distribution of flights for each proportion of counterexamples

Comparison of AH datasets

We first compared how a classifiers performs depending on which dataset it is trained
on, in order to see if the expert-contextualization performed by AH improved the
quality of the datasets (in terms of counterexamples), and if it add an impact on
the quality of classification (in terms of accuracy). With therefore trained two
models, one for each dataset, using a random forest algorithm. The models were
trained on 80% of the data, and tested on the remaining 20%, using cross-validation.
The results of this test are presented in the baseline column of table 5.8. There
is a huge difference as the accuracy for the expert-contextualized dataset is much
higher than for the raw one. This is therefore a confirmation of the domain expert
contextualization pertinence.

We computed G3, which is G3 = 95.53% for raw dataset and G3 = 95.51% for expert-
contextualized one. These results show that the proportion of counterexamples is
reasonable, so the accuracy of classifiers is not too limited by them. In addition, the
two datasets present very similar G3 values. The domain expert contextualization
seems to have preserved the proportion of counterexamples: they have decreased
in absolute number, but with respect to the size of the dataset, there are still in the
same proportions. New contextualization might here help to decrease their number
and therefore increase the model’s accuracy: after this initial analysis of AH data,
we applied our contextualization methodology based on counterexamples.

Contextualization of AH data

Starting from the two dataset, we applied our proposed methodology from figure
5.10. We first verified that the counterexamples were evenly distributed among the

5.7 Data contextualization 145

flights, to make sure our process would not remove entire flights at once. Figure
5.12 show histogram of the percentage of counterexamples for the flights in the raw
dataset. It appears that most flights share the same very low rate of counterexamples,
so that any removal of large parts of counterexamples is very likely to affect a large
number of flights. This ensures that even with additional contextualization, all
flights will still be represented in the dataset. This guaranties that the model will
consider a vast majority of flights with enough diversity, so that it is robust and does
not overfit on a subpart of the flights.

We then analyzed into details the distribution of values with respect to G3. We
made two plots for each feature and for each dataset: one showing the values
distribution, and another showing for each different value the proportion of tuples
corresponding to it and involved in a counterexample, exactly as in example 17. By
looking at figures 5.13a and 5.13b, it appears that the highest counterexamples rates
can be found for low pressure values, for which there seem to be a much higher
proportion that for others. In addition, these values are not the most frequent, but
still represent a non negligible fraction of this dataset. It can also be noted that the
domain contextualization removes a significant part of counterexamples, as shown
on figures 5.13c and 5.13d. But other regions remain that could be cleaned from
counterexamples with additional contextualization, for example for pressure values
over 5.6. A similar trend was observed for another feature of the dataset (rotor
speed).

To perform a G3-based contextualization, it was decided to apply a filter to the
dataset, that is named Filter 1 in table 5.8. For the pressure, this filter removes
all the data for which the pressure is below 3.2 and above 6.4, as these regions
have few tuples but highly contribute to counterexamples, as shown on figure 5.13.
Similar rules were applied for the other features involved, such as rotor speed. The
results in table 5.8 show the positive effect of such a filter on classifier’s accuracy:
for both the raw and expert-contextualized datasets it is increased significantly by
the application of the filter.

To see if the results could be improved even more, we identified additional regions
with a higher counterexamples rate, and obtained Filter 2, that contains the rules of
filter 1 and additional ones. This second filter includes the indicated air speed (IAS),
for which the visualisations are provided on figure 5.14. On this figure, the con-
textualization appears clearly on the dataset, as there is a clear difference between
the two datasets. Indeed, in the raw dataset, there are many counterexamples that
appear for the low IAS values: they are removed by contextualization. However,
there are still a few values with an elevated counterexample rate. Filter 2 therefore

146 Chapter 5 Evaluating data adequacy with the predictive task

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

Data selected
after filter 1

pressure

Pr
op

or
ti

on
of

co
un

te
re

xa
m

pl
es

(a) Raw: counterexamples proportion
against pressure

0 1 2 3 4 5 6
0

1

2

3

4

5
·105

pressure

N
um

be
r

of
tu

pl
es

(b) Raw: histogram of pressure values

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

pressure

Pr
op

or
ti

on
of

co
un

te
re

xa
m

pl
es

(c) Expert-contextualized: counterexamples
proportion against pressure

0 1 2 3 4 5 6
0

1

2

3

4

5
·105

pressure

N
um

be
r

of
tu

pl
es

(d) Expert-contextualized: histogram of
pressure values

Fig. 5.13: Counterexamples and distribution for pressure values

takes IAS into account, as well as other parameters related to the torque of the
helicopter’s MGB. Based on figure 5.14, it was decided to remove the data for which
IAS > 155. This conditions correspond to a small regions with many few tuples
involved with many counterexamples, and also makes sense with respect to domain
knowledge with respect to the normal behavior of the aircraft. Once again, table 5.8
shows that the accuracy results are improved by this new filter, as the context is more
defined, and allows the data to make more sense for classification, while allowing
the classifier to generalize well over the data despite the removal of tuples.

The selection conditions by the filter can here be seen as a refinement of the
expert’s contextualization, guided by the removal of counterexamples. In addition,
the counterexamples can correspond to dirty data, it is a way to remove easily
several counterexamples without having to look at them one by one, while still
improving the dataset overall quality for classification. Finally, it should be noted

5.7 Data contextualization 147

0 20 40 60 80 100 120 140 160
0

2

4

6

8
·10−2

Data selected
after filter 2

ias

Pr
op

or
ti

on
of

co
un

te
re

xa
m

pl
es

(a) Raw dataset: counterexamples
proportion against IAS

0 20 40 60 80 100 120 140 160
0

2

4

6

·105

ias

N
um

be
r

of
tu

pl
es

(b) Raw: histogram of IAS values

0 20 40 60 80 100 120 140 160
0

2

4

6

8
·10−2

ias

Pr
op

or
ti

on
of

co
un

te
re

xa
m

pl
es

(c) Expert-contextualized: counterexamples
proportion against IAS

0 20 40 60 80 100 120 140 160
0

2

4

6

·105

ias

N
um

be
r

of
tu

pl
es

(d) Expert-contextualized: histogram of IAS
values

Fig. 5.14: Counterexamples and distribution for IAS values

from table 5.8, that there is a significant gap between the highest accuracy on the
raw dataset (61.71%), and the lowest accuracy for the expert-contextualized one
(73.94%). Indeed, even with the best filter, it is not possible to reach the result that
can be obtained using expert knowledge: the best approach consists in taking the
valuable domain expert knowledge into account, before refining it using tools such
as counterexamples and G3: this combination is what gave the best results in this
study.

Overall, these experiments have allowed to apply the framework presented on figure
5.10. For each dataset, we computed metrics and provided an additional G3 based
contextualization, that allowed to give context elements for AH domain experts, and
improved the classification performances of the dataset.

148 Chapter 5 Evaluating data adequacy with the predictive task

Take away lessons

These experimentation have demonstrated how the fine-tuning of data selection
for contextualization can be used successfully to improve the accuracy of classifi-
cation models for the digital twins and virtual sensors developed by AH, by using
counterexamples to thee function the model is seeking to define. The methodology
developed in this paper allows to identify context on which it makes sense to learn
a model, by improving the initial context defined by domain experts. In addition,
this method identifies healthy flight data, by removing counterexamples, therefore
cleaning the data and improving the overall quality of the dataset. Contextualization
is an important problem in the industry, but it is not easy to address because the
proposed solution are often domain-specific, or included in the "data preparation"
steps that our left to data scientists judgment: our solution could in comparison be
applied for other types of application and involves domain experts in the loop.

There is also a qualitative aspect to this approach, that aims at taking a step back
from the model, to understand what is being done, and understand the limitations.
This is why the counterexamples are very important, to show and discuss why the
proposed model is limited by the data used for the training. G3 also gives a numerical
upper bound for the accuracy, that explain very easily if (or if not) the model has
reached its maximum performances. This is directly related to the explicability of
the model, a crucial notion in aeronautics: every choice can have a tremendous
impact on safety, and in case of a problem, it should be possible to explain every
decision made and every choice. Indeed, the prediction of what can be seen as a
simple classification algorithm output can put into question human lives getting
back into an aircraft or not. As a result, for AH, any procedure that can explain
better what is happening in the prediction process is valuable, and it will be taken
into consideration when deciding if the model should be put into production and
used in real time monitoring of helicopters.

In conclusion, this collaboration with AH turned out successful to show that our
contextualization methodology can be used on classification dataset, to better assist
domain experts in the data selection refinement for their predictive models.

5.8 Conclusion and perspectives

After questioning the data selection process in chapters 3 and 4, in this chapter,
we sought to evaluate if the selected data is adequate with the task for which it

5.8 Conclusion and perspectives 149

has been selected, especially for the training of predictive models. To this end, we
started from the simple yet interesting remark that while predictive models seek
to approximate a function from the features to the class to predict, the satisfaction
of the functional dependency between such features and class can be used to say
whether or not this function even exists. As the FD is likely to not be satisfied, we
showed how measure G3 can be used how far the data is from satisfying the FD,
and how this measure can by extension be used to give a theoretical upper bound to
classifier’s accuracy on the considered data.

To go further in the evaluation of the dataset’s adequacy, and to provide domain
experts all the necessary information on their model’s limitation, we showed how
the analysis of counterexamples can be complementary to measure G3, by allowing
to better understand what prevents the dataset to be coherent with the classification
task. We illustrated this process by the results from a collaboration with Cemafroid.

Finally, considering that the initial data selection might not provide the most ad-
equate dataset for the considered classification task, we proposed to explore how
the initial selection can be refined. To this end, we proposed to perform a contex-
tualization of the dataset, by adding new selection clauses that take into account
the classification problem, and therefore seek to improve the satisfaction of the
functional dependency between the features and the class. We successfully applied
our proposed methodology in a collaboration with Airbus Helicopters.

The three steps of this process are complementary, while each exploring a classifi-
cation dataset from a different angle, to assess its adequacy with the classification
task. This assessment is important, especially because with the democratization of
machine learning libraries and associated tools, it is easy to build a model without
questioning the quality of the data on which it is built. As a consequence, the various
solutions proposed in this chapter are a way to take a step back from the model,
and to better understand the data and its limitations before diving into the training
process. Finally, it also provides solution to better perform the data selection, by
taking into account the classification task for which it is selected.

Of course, it should be kept in mind that the proposed approach makes some
assumptions, especially because it only takes into account the available data used
for the training, and does not extrapolate for example by taking into account the
distribution of the data: we argue that this is still an interesting approach because
it allows to discuss data experts on the data they are familiar with, by providing
information on the data that is maybe simple, but can turn out to be very useful in
practice.

150 Chapter 5 Evaluating data adequacy with the predictive task

Conclusion 6
6.1 Research summary

Databases and machine learning are two distinct research domains, but because
they focus on the same main object, i.e data, they are intimately intricated, and
there are many possibilities for the two domains to benefit from one another, and
to propose new solutions at their intersection. In this thesis, we focused on what
happens when, to build a predictive model, the data transitions from the database
world to the machine learning one.

To this end, we started by focusing on the data selection: to extract the data,
it requires that the user is able to identify it, and to write the SQL query that
can exactly select her desired data. We thus started in chapter 3 by studying the
identification of the required data, with respect to all the available tuples in the
database: we proposed to model this problem as an imbalanced classification one,
and provided synthetic experimentations, to assess if it is easier to classify between
distant relations. The results were mitigated, but this first chapter allowed to
combine a machine learning approach with a key concept from relational databases
(functional dependencies).

In chapter 4, we questioned how to write a SQL query to capture exactly the desired
data, especially when it is not necessary obvious for the user how to write such
query. We therefore propose our query extensions solutions, and performed a user
evaluation to support the utility of such extensions.

We then focused on evaluating the selected data, by assessing its adequacy with the
predictive task to perform, with a focus on classification problems. In this setting, we
started by simply pointing out how, while predictive model seek to define a function
in data, functional dependencies can assess the existence of a function. Based on
this, we proposed to evaluate the adequacy of a dataset by the satisfaction of the
functional dependency between the features and the class. From this, we proposed
to use a measure to estimate how far a dataset is from satisfying this dependency,
and used this measure as an upper bound for the accuracy of classifiers on the
considered dataset. Then, we proposed solutions for two scenarios: first, if data

151

selections does not have to or cannot be refined, we proposed to understand the
model’s limitation by analysing the tuples preventing the dependency from being
satisfied; then, we proposed a methodology for the cases where data selection should
and can be refined. These two scenarios were backed up by application on real data
in the context of industrial collaborations.

6.2 Future work and perspectives

Based on the contributions exposed in this thesis, several improvements and research
directions can be considered to build up on this work. First, in the short term, the
main priority seems to be the generalization of the work presented in chapter 5,
first to also take into account regression problems with a more systematic approach
and, more generally, by being able to consider more datatypes. Indeed, the study
conducted during this thesis highlighted how the specificities of each dataset impacts
greatly the evaluation of the adequacy of the dataset for the predictive model. Our
main leads for this problem focus on being able to define custom comparability
functions for each feature, to be able to provide a personalized comparison of tuples,
and therefore retrieve counterexamples that make sense with respect to the domain
constraint. Based on this, it is even possible to consider the comparison of several
comparability scenarios, and to evaluate in which one the dataset is adequate, to
see how strict the comparability can be.

In the longer term, it would be interesting to get the works from chapter 4 and 5
even closer, in order to take the predictive task into account directly into the initial
data selection process. The idea would therefore be to characterize directly the
results of a SQL query with respect to the task it is being selected for. This can mean
evaluating G3 directly in the database, providing visualizations like in section 5.7,
and other mixed approach that allow to address the two main research questions
of this thesis at the same time. Such an approach would be in line with a database
incorporating machine learning features, and it would make it possible to perform
everything directly in the database, by relying on optimizations from the DBMS.

Finally, more generally, this thesis and especially the industrial collaborations during
which the proposed solutions were tested, highlighted the need, during a data
science process, to put the domain experts at the center of the process: the fanciest
approaches are useless is they cannot make sense to the people that best know the
content of the data. It therefore appears crucial to devise solutions that allow a
smooth collaboration between data scientists and domain experts.

152 Chapter 6 Conclusion

Bibliography

[Abi+95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases: the
logical level. Addison-Wesley Longman Publishing Co., Inc., 1995 (cit. on p. 25).

[AK+18] Mahmoud Abo Khamis, Hung Q Ngo, XuanLong Nguyen, Dan Olteanu, and
Maximilian Schleich. “In-database learning with sparse tensors”. In: Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. ACM. 2018, pp. 325–340 (cit. on pp. 3, 104).

[Abo+12] Azza Abouzied, Joseph M Hellerstein, and Avi Silberschatz. “Playful query
specification with DataPlay”. In: Proceedings of the VLDB Endowment 5.12 (2012),
pp. 1938–1941 (cit. on p. 59).

[Aff+19] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. “A comparative survey
of recent natural language interfaces for databases”. In: The VLDB Journal 28.5
(2019), pp. 793–819 (cit. on pp. 4, 9, 57).

[Ant+99] András Antos, Luc Devroye, and Laszlo Gyorfi. “Lower bounds for Bayes error
estimation”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
21.7 (1999), pp. 643–645 (cit. on p. 103).

[AA+11] Antonio Arauzo-Azofra, José Luis Aznarte, and José M Benítez. “Empirical
study of feature selection methods based on individual feature evaluation
for classification problems”. In: Expert Systems with Applications 38.7 (2011),
pp. 8170–8177 (cit. on p. 21).

[Arm74] William Ward Armstrong. “Dependency structures of database relationship”. In:
Information processing (1974), pp. 580–583 (cit. on pp. 15, 36).

[Bar+03] Ricardo Barandela, José Salvador Sánchez, V Garca, and Edgar Rangel. “Strate-
gies for learning in class imbalance problems”. In: Pattern Recognition 36.3
(2003), pp. 849–851 (cit. on p. 44).

[Bat+13] Leilani Battle, Michael Stonebraker, and Remco Chang. “Dynamic reduction
of query result sets for interactive visualizaton”. In: 2013 IEEE International
Conference on Big Data. IEEE. 2013, pp. 1–8 (cit. on p. 58).

[Bee+84] Catriel Beeri, Martin Dowd, Ronald Fagin, and Richard Statman. “On the struc-
ture of Armstrong relations for functional dependencies”. In: Journal of the ACM
(JACM) 31.1 (1984), pp. 30–46 (cit. on pp. 15, 37).

[Bid+14] Nicole Bidoit, Melanie Herschel, and Katerina Tzompanaki. “Query-based why-
not provenance with nedexplain”. In: 2014 (cit. on p. 25).

153

[Bil+06] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. “Adaptive blocking:
Learning to scale up record linkage”. In: Sixth International Conference on Data
Mining (ICDM’06). IEEE. 2006, pp. 87–96 (cit. on p. 125).

[Blu+12] Lukas Blunschi, Claudio Jossen, Donald Kossmann, Magdalini Mori, and Kurt
Stockinger. “Soda: Generating sql for business users”. In: Proceedings of the
VLDB Endowment 5.10 (2012), pp. 932–943 (cit. on p. 57).

[Boh+07] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsi-
etsidis. “Conditional functional dependencies for data cleaning”. In: Data Engi-
neering, 2007. ICDE 2007. IEEE 23rd International Conference on. IEEE. 2007,
pp. 746–755 (cit. on pp. 25, 105).

[Bon+14] Angela Bonifati, Radu Ciucanu, and Slawomir Staworko. “Interactive inference
of join queries”. In: 2014 (cit. on pp. 3, 28).

[Bos+98] Patrick Bosc, Didier Dubois, and Henri Prade. “Fuzzy functional dependencies
and redundancy elimination”. In: Journal of the American Society for Information
Science 49.3 (1998), pp. 217–235 (cit. on p. 122).

[Bre17] L Breiman. Classification and regression trees. Routledge, 2017 (cit. on p. 133).

[Bre+84] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classifi-
cation and regression trees. CRC press, 1984 (cit. on p. 68).

[Cap+19] C Capo, J-M Petit, R Revellin, G Bonjour, and G Cavalier. “Ageing of in-service
refrigerated transport vehicles: a statistical analysis”. In: 25th IIR International
Conference on Refrigeration. 2019 (cit. on pp. 131, 132).

[CK97] Michael J Carey and Donald Kossmann. “On saying “enough already!” in sql”.
In: ACM SIGMOD Record. Vol. 26. 2. ACM. 1997, pp. 219–230 (cit. on p. 53).

[Car+20] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. “Mining relaxed
functional dependencies from data”. In: Data Mining and Knowledge Discovery
34.2 (2020), pp. 443–477 (cit. on p. 120).

[Car+15] Loredana Caruccio, Vincenzo Deufemia, and Giuseppe Polese. “Relaxed func-
tional dependencies—a survey of approaches”. In: IEEE Transactions on Knowl-
edge and Data Engineering 28.1 (2015), pp. 147–165 (cit. on p. 121).

[Car+19] Diogo V Carvalho, Eduardo M Pereira, and Jaime S Cardoso. “Machine Learning
Interpretability: A Survey on Methods and Metrics”. In: Electronics 8.8 (2019),
p. 832 (cit. on p. 104).

[Cha98] Surajit Chaudhuri. “Data mining and database systems: Where is the intersec-
tion?” In: IEEE Data Eng. Bull. 21.1 (1998), pp. 4–8 (cit. on p. 3).

[Cha+02] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
“SMOTE: synthetic minority over-sampling technique”. In: Journal of artificial
intelligence research 16 (2002), pp. 321–357 (cit. on p. 30).

[Chu+13] Xu Chu, Ihab F Ilyas, and Paolo Papotti. “Discovering denial constraints”. In:
Proceedings of the VLDB Endowment 6.13 (2013), pp. 1498–1509 (cit. on p. 105).

154 Bibliography

[Chu+16] Xu Chu, Ihab F Ilyas, and Paraschos Koutris. “Distributed data deduplication”. In:
Proceedings of the VLDB Endowment 9.11 (2016), pp. 864–875 (cit. on p. 125).

[Coc46] William G Cochran. “Relative accuracy of systematic and stratified random
samples for a certain class of populations”. In: The Annals of Mathematical
Statistics (1946), pp. 164–177 (cit. on p. 81).

[Cod02] Edgar F Codd. “A relational model of data for large shared data banks”. In:
Software pioneers. Springer, 2002, pp. 263–294 (cit. on p. 2).

[Cum+17] Julien Cumin, Jean-Marc Petit, Vasile-Marian Scuturici, and Sabina Surdu. “Data
exploration with sql using machine learning techniques”. In: 2017 (cit. on pp. 29,
68).

[DR00] Mehmet M Dalkilic and Edward L Roberston. “Information dependencies”. In:
Proceedings of the nineteenth ACM SIGMOD-SIGACT-SIGART symposium on Prin-
ciples of database systems. ACM. 2000, pp. 245–253 (cit. on p. 18).

[Dao+19] Nassia Daouayry, Ammar Mechouche, Pierre-Loic Maisonneuve, Jean-Marc Petit,
and Marian Scuturici. “Data-Centric Helicopter Failure Anticipation: The MGB
Oil Pressure Virtual Sensor Case”. In: International Conference on Big Data. IEEE.
2019, 10 pages (cit. on p. 144).

[DL97] Manoranjan Dash and Huan Liu. “Feature selection for classification”. In: Intelli-
gent data analysis 1.1-4 (1997), pp. 131–156 (cit. on p. 104).

[DR02] Luc De Raedt. “A perspective on inductive databases”. In: ACM SIGKDD Explo-
rations Newsletter 4.2 (2002), pp. 69–77 (cit. on p. 3).

[Dim+14] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. “Explore-by-example:
An automatic query steering framework for interactive data exploration”. In:
Proceedings of the 2014 ACM SIGMOD international conference on Management
of data. 2014, pp. 517–528 (cit. on p. 28).

[Dom99] Pedro Domingos. “Metacost: A general method for making classifiers cost-
sensitive”. In: Proceedings of the fifth ACM SIGKDD international conference
on Knowledge discovery and data mining. 1999, pp. 155–164 (cit. on p. 30).

[DL16] Li Dong and Mirella Lapata. “Language to logical form with neural attention”.
In: arXiv preprint arXiv:1601.01280 (2016) (cit. on p. 58).

[DP13] Marina Drosou and Evaggelia Pitoura. “Ymaldb: exploring relational databases
via result-driven recommendations”. In: The VLDB Journal—The International
Journal on Very Large Data Bases 22.6 (2013), pp. 849–874 (cit. on p. 59).

[EJ01] Andrew Estabrooks and Nathalie Japkowicz. “A mixture-of-experts framework
for learning from imbalanced data sets”. In: International Symposium on Intelli-
gent Data Analysis. Springer. 2001, pp. 34–43 (cit. on p. 30).

[Fag+03] Ronald Fagin, Amnon Lotem, and Moni Naor. “Optimal aggregation algorithms
for middleware”. In: Journal of computer and system sciences 66.4 (2003),
pp. 614–656 (cit. on p. 53).

Bibliography 155

[Fan+11] Ju Fan, Guoliang Li, and Lizhu Zhou. “Interactive SQL query suggestion: Making
databases user-friendly”. In: 2011 IEEE 27th International Conference on Data
Engineering. IEEE. 2011, pp. 351–362 (cit. on p. 57).

[Fan08] Wenfei Fan. “Dependencies revisited for improving data quality”. In: Proceedings
of the twenty-seventh ACM SIGMOD-SIGACT-SIGART symposium on Principles of
database systems. ACM. 2008, pp. 159–170 (cit. on p. 105).

[Fan+09] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. “Reasoning about record
matching rules”. In: Proceedings of the VLDB Endowment 2.1 (2009), pp. 407–
418 (cit. on p. 20).

[Fer+18] Alberto Fernández, Salvador Garcia, Francisco Herrera, and Nitesh V Chawla.
“SMOTE for learning from imbalanced data: progress and challenges, marking
the 15-year anniversary”. In: Journal of artificial intelligence research 61 (2018),
pp. 863–905 (cit. on p. 30).

[FD+14] Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim.
“Do we need hundreds of classifiers to solve real world classification problems?”
In: The journal of machine learning research 15.1 (2014), pp. 3133–3181 (cit. on
p. 117).

[FS95] Yoav Freund and Robert E Schapire. “A desicion-theoretic generalization of
on-line learning and an application to boosting”. In: European conference on
computational learning theory. Springer. 1995, pp. 23–37 (cit. on p. 30).

[Fri97] Jerome H Friedman. “On bias, variance, 0/1—loss, and the curse-of-dimensionality”.
In: Data mining and knowledge discovery 1.1 (1997), pp. 55–77 (cit. on p. 66).

[FH87] K. Fukunaga and D. M. Hummels. “Bayes Error Estimation Using Parzen and
k-NN Procedures”. In: IEEE Transactions on Pattern Analysis and Machine Intelli-
gence PAMI-9.5 (1987), pp. 634–643 (cit. on p. 103).

[Fuk13] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier,
2013 (cit. on pp. 10, 22).

[Get19] Lise Getoor. “Responsible Data Science”. In: Proceedings of the 2019 International
Conference on Management of Data, SIGMOD Conference 2019, Amsterdam, The
Netherlands, June 30 - July 5, 2019. 2019, p. 1 (cit. on p. 98).

[Ghi+15] Luca M Ghiringhelli, Jan Vybiral, Sergey V Levchenko, Claudia Draxl, and
Matthias Scheffler. “Big data of materials science: critical role of the descriptor”.
In: Physical review letters 114.10 (2015), p. 105503 (cit. on p. 103).

[Gui+18a] Marie Le Guilly, Jean-Marc Petit, and Marian Scuturici. “A First Experimental
Study on Functional Dependencies for Imbalanced Datasets Classification”.
In: Information Search, Integration, and Personalization - 12th International
Workshop, ISIP 2018, Fukuoka, Japan, May 14-15, 2018, Revised Selected Papers.
2018, pp. 116–133 (cit. on p. 11).

156 Bibliography

[Gui+19] Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, and Ihab F. Ilyas.
“ExplIQuE: Interactive Databases Exploration with SQL”. In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
CIKM 2019, Beijing, China, November 3-7, 2019. 2019, pp. 2877–2880 (cit. on
p. 11).

[Gui+18b] Marie Le Guilly, Jean-Marc Petit, Vasile-Marian Scuturici, and Ihab F. Ilyas.
“Partitioning queries for data exploration using query extensions”. In: BDA 2018
34ème conférence sur la Gestion de Données: Principes, Technologies et Applications.
Bucarest, Romania, 2018 (cit. on p. 11).

[Han05] Jiawei Han. Data Mining: Concepts and Techniques. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2005 (cit. on p. 65).

[Han+11] Jiawei Han, Jian Pei, and Micheline Kamber. Data mining: concepts and tech-
niques. Elsevier, 2011 (cit. on pp. 30, 44).

[HV18] Melanie Herschel and Yannis Velegrakis. “On Data Exploration in the era of Big
Data”. In: ACM SIGMOD Blog (2018) (cit. on p. 52).

[Hua98] Zhexue Huang. “Extensions to the k-means algorithm for clustering large data
sets with categorical values”. In: Data mining and knowledge discovery 2.3 (1998),
pp. 283–304 (cit. on p. 66).

[Huh+99] Yka Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. “TANE: An
efficient algorithm for discovering functional and approximate dependencies”.
In: The computer journal 42.2 (1999), pp. 100–111 (cit. on pp. 18, 25, 121).

[IL13] Stratos Idreos and Erietta Liarou. “dbTouch: Analytics at your Fingertips.” In:
CIDR. 2013 (cit. on p. 58).

[Idr+15] Stratos Idreos, Olga Papaemmanouil, and Surajit Chaudhuri. “Overview of data
exploration techniques”. In: Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. 2015, pp. 277–281 (cit. on pp. 9, 51).

[IM96] Tomasz Imielinski and Heikki Mannila. “A database perspective on knowledge
discovery”. In: Communications of the ACM 39.11 (1996), pp. 58–64 (cit. on
p. 3).

[Jai08] Anil K Jain. “Data clustering: 50 years beyond k-means”. In: Joint European
Conference on Machine Learning and Knowledge Discovery in Databases. Springer.
2008, pp. 3–4 (cit. on p. 64).

[Jek+17] L Jekov, P Cordero, and M Enciso. “Fuzzy functional dependencies”. In: Fuzzy
Sets and Systems 317.C (2017), pp. 88–120 (cit. on p. 48).

[JL16] Robin Jia and Percy Liang. “Data recombination for neural semantic parsing”.
In: arXiv preprint arXiv:1606.03622 (2016) (cit. on p. 58).

[Kas+10] Abhijith Kashyap, Vagelis Hristidis, and Michalis Petropoulos. “Facetor: cost-
driven exploration of faceted query results”. In: Proceedings of the 19th ACM
international conference on Information and knowledge management. ACM. 2010,
pp. 719–728 (cit. on p. 59).

Bibliography 157

[KS12] Gyula OH Katona and Attila Sali. “On the distance of databases”. In: Annals
of Mathematics and Artificial Intelligence 65.2-3 (2012), pp. 199–216 (cit. on
pp. 27, 31).

[Kat+10] Gyula OH Katona, Anita Keszler, and Attila Sali. “On the distance of databases”.
In: International Symposium on Foundations of Information and Knowledge Sys-
tems. Springer. 2010, pp. 76–93 (cit. on pp. 16, 31).

[Kau+19] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. “A systematic
review on imbalanced data challenges in machine learning: Applications and
solutions”. In: ACM Computing Surveys (CSUR) 52.4 (2019), pp. 1–36 (cit. on
p. 30).

[Kim+17] Been Kim, Martin Wattenberg, Justin Gilmer, et al. “Interpretability beyond
feature attribution: Quantitative testing with concept activation vectors (tcav)”.
In: arXiv preprint arXiv:1711.11279 (2017) (cit. on p. 104).

[KR18] Benny Kimelfeld and Christopher Ré. “A relational framework for classifier
engineering”. In: ACM Transactions on Database Systems (TODS) 43.3 (2018),
pp. 1–36 (cit. on p. 3).

[KR92] Kenji Kira and Larry A Rendell. “A practical approach to feature selection”. In:
Machine Learning Proceedings 1992. Elsevier, 1992, pp. 249–256 (cit. on p. 104).

[KM95] Jyrki Kivinen and Heikki Mannila. “Approximate inference of functional depen-
dencies from relations”. In: Theoretical Computer Science 149.1 (1995), pp. 129–
149 (cit. on pp. 11, 18, 19).

[KP03] Sotiris Kotsiantis and Panayiotis Pintelas. “Mixture of expert agents for handling
imbalanced data sets”. In: Annals of Mathematics, Computing & Teleinformatics
1.1 (2003), pp. 46–55 (cit. on p. 30).

[Kot+06] Sotiris Kotsiantis, Dimitris Kanellopoulos, Panayiotis Pintelas, et al. “Handling
imbalanced datasets: A review”. In: GESTS International Transactions on Com-
puter Science and Engineering 30.1 (2006), pp. 25–36 (cit. on p. 30).

[Kou+09] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.
“Metric functional dependencies”. In: 2009 IEEE 25th International Conference
on Data Engineering. IEEE. 2009, pp. 1275–1278 (cit. on p. 20).

[KM+97] Miroslav Kubat, Stan Matwin, et al. “Addressing the curse of imbalanced training
sets: one-sided selection”. In: Icml. Vol. 97. Nashville, USA. 1997, pp. 179–186
(cit. on p. 30).

[KS13] Ohbyung Kwon and Jae Mun Sim. “Effects of data set features on the perfor-
mances of classification algorithms”. In: Expert Systems with Applications 40.5
(2013), 1847–1857 (cit. on p. 103).

[LG+20] Marie Le Guilly, Nassia Daouayry, Maisonneuve Pierre-Loic, et al. “Contex-
tualisation of Datasets for better classification models: Application to Airbus
Helicopters flight data”. In: 24th European Conference on Advances in Databases
and Information Systems (ADBIS). Lyon, France, 2020 (cit. on p. 12).

158 Bibliography

[LG+19] Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. “Evaluating classi-
fication feasability over datasets using functional dependencies”. In: BDA 2019
35ème conférence sur la Gestion de Données: Principes, Technologies et Applications.
Lyon, France, 2019 (cit. on p. 12).

[LG+17] Marie Le Guilly, Jean-Marc Petit, and Vasile-Marian Scuturici. “Retour d’expérience
sur l’analyse des données d’un tunnelier”. In: BDA 2017 33ème conférence sur la
Gestion de Données - Principes, Technologies et Applications. Nancy, France, Nov.
2017 (cit. on p. 59).

[LL12] Mark Levene and George Loizou. A guided tour of relational databases and
beyond. Springer Science & Business Media, 2012 (cit. on p. 13).

[LJ14] Fei Li and HV Jagadish. “Constructing an interactive natural language interface
for relational databases”. In: Proceedings of the VLDB Endowment 8.1 (2014),
pp. 73–84 (cit. on p. 58).

[Li+15] Hao Li, Chee-Yong Chan, and David Maier. “Query from examples: An itera-
tive, data-driven approach to query construction”. In: Proceedings of the VLDB
Endowment 8.13 (2015), pp. 2158–2169 (cit. on p. 28).

[Lis+18] M. Lissandrini, D. Mottin, T. Palpanas, Y. Velegrakis, and H. V. Jagadish. Data
Exploration Using Example-Based Methods. 2018 (cit. on pp. 7, 24, 28).

[Liu+15] Henry Liu, Mingbin Xu, Ziting Yu, Vincent Corvinelli, and Calisto Zuzarte.
“Cardinality estimation using neural networks”. In: Proceedings of the 25th
Annual International Conference on Computer Science and Software Engineering.
IBM Corp. 2015, pp. 53–59 (cit. on p. 4).

[LS+96] Huan Liu, Rudy Setiono, et al. “A probabilistic approach to feature selection-a
filter solution”. In: ICML. Vol. 96. Citeseer. 1996, pp. 319–327 (cit. on p. 104).

[Llo06] S. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Trans. Inf. Theor. 28.2
(Sept. 2006), pp. 129–137 (cit. on p. 66).

[MP18] Ryan Marcus and Olga Papaemmanouil. “Deep reinforcement learning for join
order enumeration”. In: Proceedings of the First International Workshop on
Exploiting Artificial Intelligence Techniques for Data Management. 2018, pp. 1–4
(cit. on p. 4).

[Mar+19] Ryan Marcus, Parimarjan Negi, Hongzi Mao, et al. “Neo: A learned query
optimizer”. In: Proceedings of the VLDB Endowment 12.11 (2019), pp. 1705–
1718 (cit. on p. 4).

[Mar+18] Denis Mayr Lima Martins, Gottfried Vossen, and Fernando Buarque de Lima
Neto. “Discovering SQL Queries from Examples using Intelligent Algorithms”.
In: 2018 IEEE Latin American Conference on Computational Intelligence (LA-CCI).
IEEE. 2018, pp. 1–6 (cit. on p. 28).

[Mec+19] A. Mechouche, N. Daouayry, and V. Camerini. “Helicopter Big Data Processing
and Predictive Analytics: Feedback and Perspectives”. In: Proceedings of the 45th
European Rotorcraft Forum. Warsaw, Poland, 2019, 7 pages (cit. on p. 143).

Bibliography 159

[MK09] Chaitanya Mishra and Nick Koudas. “Interactive query refinement”. In: Pro-
ceedings of the 12th International Conference on Extending Database Technology:
Advances in Database Technology. ACM. 2009, pp. 862–873 (cit. on p. 53).

[Moh+18] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. “Foundations of
machine learning”. In: (2018) (cit. on p. 21).

[Mon+17] Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek,
and Klaus-Robert Müller. “Explaining nonlinear classification decisions with
deep taylor decomposition”. In: Pattern Recognition 65 (2017), pp. 211–222
(cit. on p. 104).

[Mül+06] Heiko Müller, Johann-Christoph Freytag, and Ulf Leser. “Describing differences
between databases”. In: Proceedings of the 15th ACM international conference
on Information and knowledge management. ACM. 2006, pp. 612–621 (cit. on
p. 31).

[Nan+13] Arnab Nandi, Lilong Jiang, and Michael Mandel. “Gestural query specification”.
In: Proceedings of the VLDB Endowment 7.4 (2013), pp. 289–300 (cit. on p. 58).

[Ng01] Wilfred Ng. “An extension of the relational data model to incorporate ordered
domains”. In: ACM Transactions on Database Systems (TODS) 26.3 (2001),
pp. 344–383 (cit. on p. 122).

[Ng99] Wilfred Ng. “Ordered functional dependencies in relational databases”. In:
Information Systems 24.7 (1999), pp. 535–554 (cit. on p. 122).

[Ort+19] Jennifer Ortiz, Magdalena Balazinska, Johannes Gehrke, and S Sathiya Keerthi.
“An Empirical Analysis of Deep Learning for Cardinality Estimation”. In: arXiv
preprint arXiv:1905.06425 (2019) (cit. on p. 4).

[Pan+95] G. Panozzo, Boldrin B., G. Minotto, B. Toniolo, and N. Biancardi. “Ageing of
insulated vehicles: theoretical model and experimental analysis”. In: Proc. 19th
Int. Congr. Refrig., Den Hague, Netherlands, Vol. II II (1995), pp. 583–589 (cit. on
p. 131).

[Pan+99] G. Panozzo, O. Alberti, B. Toniolo, A. Barizza, and B. Boldrin. “Parameters
affecting the ageing of insulated vehicles”. In: Proc 20th International Congress
of Refrigeration IV (1999) (cit. on p. 131).

[Par+13] Aditya Parameswaran, Neoklis Polyzotis, and Hector Garcia-Molina. “Seedb:
Visualizing database queries efficiently”. In: Proceedings of the VLDB Endowment
7.4 (2013), pp. 325–328 (cit. on p. 58).

[PR05] Laxmi Parida and Naren Ramakrishnan. “Redescription mining: Structure theory
and algorithms”. In: AAAI. Vol. 5. 2005, pp. 837–844 (cit. on p. 64).

[Ped+11] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. “Scikit-learn: Machine Learning
in Python”. In: Journal of Machine Learning Research 12 (2011), pp. 2825–2830
(cit. on pp. 44, 74, 114).

[QR14] Bahar Qarabaqi and Mirek Riedewald. “User-driven refinement of imprecise
queries”. In: 2014 IEEE 30th International Conference on Data Engineering. IEEE.
2014, pp. 916–927 (cit. on p. 59).

160 Bibliography

[RD00] Erhard Rahm and Hong Hai Do. “Data cleaning: Problems and current ap-
proaches”. In: IEEE Data Eng. Bull. 23.4 (2000), pp. 3–13 (cit. on p. 105).

[RM88] KVSVN Raju and Arun K Majumdar. “Fuzzy functional dependencies and lossless
join decomposition of fuzzy relational database systems”. In: ACM Transactions
on Database Systems (TODS) 13.2 (1988), pp. 129–166 (cit. on p. 122).

[Ran71] William M Rand. “Objective criteria for the evaluation of clustering methods”.
In: Journal of the American Statistical association 66.336 (1971), pp. 846–850
(cit. on p. 81).

[RK04] Bhavani Raskutti and Adam Kowalczyk. “Extreme re-balancing for SVMs: a case
study”. In: ACM Sigkdd Explorations Newsletter 6.1 (2004), pp. 60–69 (cit. on
p. 30).

[Rek+17] Theodoros Rekatsinas, Xu Chu, Ihab F Ilyas, and Christopher Ré. “Holoclean:
Holistic data repairs with probabilistic inference”. In: Proceedings of the VLDB
Endowment 10.11 (2017), pp. 1190–1201 (cit. on p. 105).

[Roh+19] Yuji Roh, Geon Heo, and Steven Euijong Whang. “A survey on data collection for
machine learning: a big data-ai integration perspective”. In: IEEE Transactions
on Knowledge and Data Engineering (2019) (cit. on p. 5).

[Rou87] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and vali-
dation of cluster analysis”. In: Journal of computational and applied mathematics
20 (1987), pp. 53–65 (cit. on pp. 67, 125).

[Sa+19] Christopher De Sa, Ihab F. Ilyas, Benny Kimelfeld, Christopher Ré, and Theodoros
Rekatsinas. “A Formal Framework for Probabilistic Unclean Databases”. In: 22nd
International Conference on Database Theory, ICDT 2019, March 26-28, 2019,
Lisbon, Portugal. 2019, 6:1–6:18 (cit. on p. 105).

[Sah+16] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan, et al. “ATHENA:
an ontology-driven system for natural language querying over relational data
stores”. In: Proceedings of the VLDB Endowment 9.12 (2016), pp. 1209–1220
(cit. on pp. 4, 58).

[Sal+19] Babak Salimi, Luke Rodriguez, Bill Howe, and Dan Suciu. “Interventional fair-
ness: Causal database repair for algorithmic fairness”. In: Proceedings of the
2019 International Conference on Management of Data. ACM. 2019, pp. 793–810
(cit. on p. 105).

[Sch90] R Schapire. “The strength of weak learnability”. In: Machine learning 5.2 (1990),
pp. 197–227 (cit. on p. 133).

[Sch+16] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. “Learning linear regres-
sion models over factorized joins”. In: Proceedings of the 2016 International
Conference on Management of Data. ACM. 2016, pp. 3–18 (cit. on pp. 3, 104).

[Scu+15] David Sculley, Gary Holt, Daniel Golovin, et al. “Hidden technical debt in
machine learning systems”. In: Advances in neural information processing systems.
2015, pp. 2503–2511 (cit. on p. 4).

Bibliography 161

[SK16] Thibault Sellam and Martin Kersten. “Cluster-driven navigation of the query
space”. In: IEEE Transactions on Knowledge and Data Engineering 28.5 (2016),
pp. 1118–1131 (cit. on p. 66).

[Sel+17] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, et al. “Grad-cam:
Visual explanations from deep networks via gradient-based localization”. In: Pro-
ceedings of the IEEE international conference on computer vision. 2017, pp. 618–
626 (cit. on p. 104).

[Sha+18] Shiven Sharma, Colin Bellinger, Bartosz Krawczyk, Osmar Zaiane, and Nathalie
Japkowicz. “Synthetic oversampling with the majority class: A new perspective
on handling extreme imbalance”. In: 2018 IEEE International Conference on Data
Mining (ICDM). IEEE. 2018, pp. 447–456 (cit. on p. 30).

[She+14] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev
Novik. “Discovering queries based on example tuples”. In: Proceedings of the
2014 ACM SIGMOD international conference on Management of data. 2014,
pp. 493–504 (cit. on pp. 3, 28).

[Son10] Shaoxu Song. “Data dependencies in the presence of difference”. PhD thesis.
Hong Kong University of Science and Technology, 2010 (cit. on p. 120).

[Sto+08] Chris Stolte, Diane Tang, and Pat Hanrahan. “Polaris: a system for query, analysis,
and visualization of multidimensional databases”. In: Communications of the
ACM 51.11 (2008), pp. 75–84 (cit. on p. 58).

[SI18] Michael Stonebraker and Ihab F Ilyas. “Data Integration: The Current Status
and the Way Forward.” In: IEEE Data Eng. Bull. 41.2 (2018), pp. 3–9 (cit. on
p. 51).

[Tan+14] Jiliang Tang, Salem Alelyani, and Huan Liu. “Feature selection for classification:
A review”. In: Data classification: algorithms and applications (2014), p. 37
(cit. on p. 103).

[Tra+09] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. “Query by
output”. In: Proceedings of the 2009 ACM SIGMOD International Conference on
Management of data. 2009, pp. 535–548 (cit. on pp. 3, 28).

[Tra+14] Quoc Trung Tran, Chee-Yong Chan, and Srinivasan Parthasarathy. “Query Re-
verse Engineering”. In: The VLDB Journal 23.5 (Oct. 2014), pp. 721–746 (cit. on
pp. 7, 64).

[Leg] “Transport Vehicles (industrial paper)”. In: (cit. on p. 12).

[Tru+19] Immanuel Trummer, Junxiong Wang, Deepak Maram, et al. “SkinnerDB: regret-
bounded query evaluation via reinforcement learning”. In: Proceedings of the
2019 International Conference on Management of Data. 2019, pp. 1153–1170
(cit. on p. 4).

[Tuk77] John W Tukey. Exploratory data analysis. Vol. 2. Reading, Mass., 1977 (cit. on
p. 104).

162 Bibliography

[TG96] Kagan Tumer and Joydeep Ghosh. “Estimating the Bayes error rate through
classifier combining”. In: Proceedings of 13th International Conference on Pattern
Recognition. Vol. 2. IEEE. 1996, pp. 695–699 (cit. on p. 22).

[Tzi+08] Yannis Tzitzikas, Nikos Armenatzoglou, and Panagiotis Papadakos. “FleXplorer:
A framework for providing faceted and dynamic taxonomy-based information
exploration”. In: Database and Expert Systems Application, 2008. DEXA’08. 19th
International Workshop on. IEEE. 2008, pp. 392–396 (cit. on p. 59).

[Uta+18] Prasetya Utama, Nathaniel Weir, Fuat Basik, et al. “An end-to-end neural natural
language interface for databases”. In: arXiv preprint arXiv:1804.00401 (2018)
(cit. on p. 58).

[VA+17] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. “Auto-
matic database management system tuning through large-scale machine learn-
ing”. In: Proceedings of the 2017 ACM International Conference on Management
of Data. 2017, pp. 1009–1024 (cit. on p. 4).

[Vap+94] Vladimir Vapnik, Esther Levin, and Yann Le Cun. “Measuring the VC-dimension
of a learning machine”. In: Neural computation 6.5 (1994), pp. 851–876 (cit. on
p. 22).

[Wan+03] Haixun Wang, Carlo Zaniolo, and Chang Richard Luo. “ATLAS: A small but
complete SQL extension for data mining and data streams”. In: Proceedings
2003 VLDB Conference. Elsevier. 2003, pp. 1113–1116 (cit. on p. 3).

[Wan+16] Wei Wang, Meihui Zhang, Gang Chen, et al. “Database meets deep learning:
Challenges and opportunities”. In: ACM SIGMOD Record 45.2 (2016), pp. 17–22
(cit. on p. 3).

[WL18] Ziheng Wei and Sebastian Link. “DataProf: semantic profiling for iterative data
cleansing and business rule acquisition”. In: Proceedings of the 2018 International
Conference on Management of Data. ACM. 2018, pp. 1793–1796 (cit. on p. 105).

[WC17] Yaacov Y Weiss and Sara Cohen. “Reverse engineering spj-queries from exam-
ples”. In: Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems. 2017, pp. 151–166 (cit. on p. 28).

[Wu+16] Chia-Chi Wu, Yen-Liang Chen, Yi-Hung Liu, and Xiang-Yu Yang. “Decision tree
induction with a constrained number of leaf nodes”. In: Applied Intelligence 45.3
(2016), pp. 673–685 (cit. on p. 69).

[Wu+14] Eugene Wu, Leilani Battle, and Samuel R Madden. “The case for data visualiza-
tion management systems: vision paper”. In: Proceedings of the VLDB Endowment
7.10 (2014), pp. 903–906 (cit. on p. 58).

[Yu+07] Bei Yu, Guoliang Li, Karen Sollins, and Anthony KH Tung. “Effective keyword-
based selection of relational databases”. In: Proceedings of the 2007 ACM SIG-
MOD international conference on Management of data. 2007, pp. 139–150 (cit. on
p. 57).

Bibliography 163

[YL03] Lei Yu and Huan Liu. “Feature selection for high-dimensional data: A fast
correlation-based filter solution”. In: Proceedings of the 20th international confer-
ence on machine learning (ICML-03). 2003, pp. 856–863 (cit. on p. 104).

[Zha+13] Meihui Zhang, Hazem Elmeleegy, Cecilia M Procopiuc, and Divesh Srivastava.
“Reverse engineering complex join queries”. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data. 2013, pp. 809–820
(cit. on p. 28).

[Zha+03] Shichao Zhang, Chengqi Zhang, and Qiang Yang. “Data preparation for data
mining”. In: Applied artificial intelligence 17.5-6 (2003), pp. 375–381 (cit. on
p. 105).

[Zho+17] Victor Zhong, Caiming Xiong, and Richard Socher. “Seq2sql: Generating struc-
tured queries from natural language using reinforcement learning”. In: arXiv
preprint arXiv:1709.00103 (2017) (cit. on p. 4).

[ZP09] Bin Zhou and Jian Pei. “Answering aggregate keyword queries on relational
databases using minimal group-bys”. In: Proceedings of the 12th International
Conference on Extending Database Technology: Advances in Database Technology.
2009, pp. 108–119 (cit. on p. 57).

[Zlo75] Moshé M Zloof. “Query by example”. In: Proceedings of the May 19-22, 1975,
national computer conference and exposition. 1975, pp. 431–438 (cit. on p. 28).

[Zou+06] Beibei Zou, Xuesong Ma, Bettina Kemme, Glen Newton, and Doina Precup.
“Data mining using relational database management systems”. In: Pacific-asia
conference on knowledge discovery and data mining. Springer. 2006, pp. 657–667
(cit. on pp. 3, 104).

List of Figures

1.1 Integration of the research questions in the traditional process of data
selection for the construction of predictive models 6

2.1 Poset of closures for schema R = ABC 15
2.2 Illustration of two closure systems with a maximum symmetric differ-

ence, defined on the same schema . 17

3.1 Structure of the different relations for the imbalanced dataset 32
3.2 Illustration of algorithm 1 applied to a schema of size 3 35

4.1 Picture of a tunnel boring machine . 60

164

4.2 Illustration of the query extensions computation process for a 5-extensions
set: partition the initial results, and find an extension for each of them 65

4.3 Construction of a binary decision tree given a fixed number of leaves . 69

4.4 Binary decision tree from Table 1 . 70

4.5 Snapshot of ExplIQuE connection page 75

4.6 Snapshot of ExplIQuE main page . 76

4.7 Snapshot of ExplIQuE configuration panel 76

4.8 Snapshot of ExplIQuE images visualization 78

4.9 Extensions computation time vs number of attributes and extensions
(10 000 tuples) . 79

4.10 Extensions computation time vs number of extensions and tuples (20
attributes) . 80

4.11 Extensions computation time vs number of tuples and attributes (10
extensions) . 81

4.12 Comparison of extensions quality against the sampling size 82

4.13 Snapshot of the interface used for the experimentations (ExplIQuE’s
ancestor) . 84

4.14 Data visualization for question 4 of the user experimentation 87

4.15 Participants’ feedback on questions difficulty 90

4.16 Histogram of average answering time per question, for group EXT and
group NoEXT . 91

4.17 Boxplot of answering time per question, for groups EXT and NoEXT,
only for correct answers . 92

4.18 Percentage of extensions usage for questions 4 to 10 for group EXT . . 93

4.19 Type of answer per question, for participants who used the extensions
at least once . 94

4.20 Histogram of average answering time for questions 4 to 10, for groups
EXT1, EXT2 and NoEXT . 95

5.1 Data structure for G3 computation . 110

5.2 Classifiers accuracy given the parameters for generating difficult classi-
fication datasets, compared to G3 . 115

5.3 Evolution of classifiers accuracy given the FD error measure of the dataset116

5.4 Couterexamples interaction graph for the Titanic dataset 121

5.5 Data reduction process . 123

5.6 Validation of G3 computing time, on both original and reduced data, in
parallel with the reducing ratio . 126

5.7 LeaFF page for the configuration of the classification dataset 128

5.8 LeaFF page for the exploration of counterexamples 129

List of Figures 165

5.9 LeaFF visualization of counterexample’s for the real Titanic dataset:
each green node is a tuple, and two tuples are connected if they form a
counterexample . 130

5.10 Overview of the solution proposed to contextualize a classification dataset139
5.11 Toy example for filter design . 141
5.12 Distribution of flights for each proportion of counterexamples 145
5.13 Counterexamples and distribution for pressure values 147
5.14 Counterexamples and distribution for IAS values 148

List of Tables

3.1 Accuracy of each classifier for each data generation strategy. Both
models are evaluated on their own testing sets. 46

3.2 Accuracy of each classifier for each data generation strategy. Both
models are evaluated on the same testing set, corresponding to data
from an imbalanced datasets, with tuples from r− and Z. 47

4.1 Result set of query Q . 55
4.2 Tuples from table 4.1 labelled by clustering (k = 3) 68
4.3 Example of a contigency table . 81

5.1 Toy dataset: Titanic relation . 102
5.2 Generation of a difficult dataset . 111
5.3 Comparison of accuracy and G3 measure over classification datasets . . 117
5.4 Possible outcomes for the comparability of two values for the satisfac-

tion of a functional dependency . 118
5.5 Toy example from the problem of continuous values 119
5.6 Reduction ratio for some datasets from table 5.3 125
5.7 Subset of counterexamples from the classificationd dataset, on the

ageing of refrigerated transport vehicles. 134
5.8 Accuracy of random forest models on the oil pressure datasets 144

166

List of Tables 167

FOLIO ADMINISTRATIF

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON

NOM : LE GUILLY DATE de SOUTENANCE : 24/09/2020
(avec précision du nom de jeune fille, le cas échéant)

Prénoms : Marie Morgane Coralie

TITRE : Guided data selection for predictive models

NATURE : Doctorat Numéro d'ordre : 2020LYSEI072

Ecole doctorale : N°512 InfoMaths

Spécialité : Informatique

RESUME :
Databases and machine learning (ML) have historically evolved as two separate domains: while databases are used to store
and query the data, ML is devoted to predictive models inference, clustering, etc. Despite its apparent simplicity, the “data
preparation” step of ML applications turns out to be the most time-consuming step in practice. Interestingly this step
encompasses the bridge between databases and ML. In this setting, we raise and address three main problems related to data
selection for building predictive models. First, the database usually contains more than the data of interest: how to separate the
data that the analyst wants from the one she does not want? We propose to see this problem as imbalanced classification
between the tuples of interest and the rest of the database. We develop an undersampling method based on the functional
dependencies of the database. Second, we discuss the writing of the query returning the tuples of interest. We propose a SQL
query completion solution based on data semantics, that starts from a very general query, and helps an analyst to refine it until
she selects her data of interest. This process aims at helping the analyst to design the query that will eventually select the data
she requires. Third, assuming the data has successfully been extracted from the database, the next natural question follows: is
the selected data suited to answer the considered ML problem? Since getting a predictive model from the features to the class
to predict amounts to providing a function, we point out that it makes sense to first assess the existence of that function in the
data. This existence can be studied through the prism of functional dependencies, and we show how they can be used to
understand a model’s limitation, and to refine the initial data selection if necessary.

MOTS-CLÉS : databases, data selection, predictive models

Laboratoire (s) de recherche : LIRIS

Directeur de thèse: Jean-Marc Petit et Vasile-Marian Scuturici

Président de jury : Nicole Bidoit-Tollu

Composition du jury : Antoine Cornuejols, Sebastian Link, Nicole Bidoit-Tollu, Mohand-Saïd Hacid, Jean-Marc Petit, Vasile-
Marian Scuturici

