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Abstract CEMAFROID is a company with a french delegated public service, deliv-
ering conformity attestations of refrigerated transport vehicles. It studies the ageing
of those vehicles, depending on several physiochemical and mechanical factors, for
which physical models have been proposed by researchers in thermal engineering.
The DATAFRIG® database records more than 300 000 attestations of vehicles over
80 attributes, opening the opportunity to predict the ageing by building a numerical
model using machine learning methods. During the development of such a model,
several classical questions appeared, regarding the data quality, the field reality and
the mistrust of domain experts. In this paper, we propose to use the notion of func-
tional dependencies to address the aforementioned model’s limitations. In particular,
we investigate how FDs could help, especially using their counterexamples, that turn
out to provide meaningful examples of such limitations, easily interpretable by do-
main experts. Interestingly, the existence of such counterexamples in the dataset is a
way of demystifying the numerical model with the experts, by giving them back the
control over their own data. This approach has been tested with domain experts from
CEMAFROID, with many positive feedbacks. It is worth noting that this attempt to
better trust classification models is not limited to a particular application, and could
be generalized to others.

1 Introduction

Refrigerated transport vehicles’ main objective is to supply consumers with good
quality and safe perishable products. A wide array of services to the cold chain is
provided by using a diversified fleet that is continually evolving. In this context,
CEMAFROID offers testing and calibration services, and has been designated as an
approved body for issuing conformity attestations for refrigerated transport vehicles.
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To this end, researchers in thermal engineering have access to a large database,
DATATFRIG®, recording data about more than 300 000 attestations for refrigerated
vehicles, with tables spanning over almost 80 attributes. Among all these attributes,
the thermal insulation of the body is a basic element of the refrigerated equipment,
as it is one of the major barriers again heat gain from the outside into the refrigerated
enclosure. This attribute is characterized by an "insulation coefficient" denoted K: it
is very important as it may be controlled as required by the ATP (the international
Agreement for the Transport of Perishable foodstuff). The lower the K coefficient the
better, but due to the ageing of the vehicle, it increases over time. To control it and
allow the vehicle to continue to transport perishable food, its thermal insulation is
measured again after 12 years of service. The ratio between this value and the initial
value allows too define the ageing of the vehicle, a value that can greatly differ from
one vehicle to another.

To explain the variability in the ageing of refrigerated vehicles, several studies
have looked at the problem to identify factors to explain it, and propose physical
models for the ageing. [?] presented the factors playing a role in the ageing process,
classifying them into three different categories. The effects of some of these factors
were analyzed in previous studies. As stated by [?], the ageing of an insulated
enclosure for a refrigerated vehicle is mostly due to the permeability of the foam
to the gases, to the condensation of water into the foam cells and to the increase of
the percentage of the broken cells. These causes explain the ageing from a physio-
chemical point of view and primarily concern the panels used to build the insulated
enclosure and the insulation materials itself. Ageing of refrigerated vehicles also
has a mechanical component due to the movements on the road, the routes covered
and the payload. A statistical analysis carried out in [?] highlighted the influence
in the ageing rate due to the rails and to the refrigerating units. As pointed out by
the authors, in presence of these accessories, the mechanical stresses are deeply
increased.

But whereas all these studies rely on physical models to analyse the problem,
the amount of data available in the DATATFRIG® makes it possible to build a
predictive model, using machine learning techniques: such a new approach is a way
to tackle the problem from a different angle, to possibly identify new causes for the
ageing of vehicles, and to confront new results to the one obtained with physical
models. We propose in the present paper to approach the problem from a different
angle, by developing a numerical model to predict the ageing of vehicles. Such a
numerical model is possible owing to the existence of an important database, that
we propose to use in order to build a classification model, relying on well-known
algorithm in machine learning. We propose to use the attributes identified in the
aforementioned studies as features for the classifier, in order to predict the computed
ageing attribute. This classification problem, as well as the data processing and the
first classification results are presented in this paper. Shifting from a physical to
a numerical model is indeed a big change of paradigm, especially for the domain
experts that mainly design and work with physical models. TheML techniques might
even generate scepticism. In this study, we therefore paid strong attention to give
guaranties about the model, and to explain its limitations. It was important to explain
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why the considered data could (or not) produce a satisfyingmodel, so that the experts
that would use it afterwards could trust it and understand why its decisions made
sense. To this end, it appeared that functional dependencies could be a very powerful
tool to model knowledge on the classifier [?].

Functional dependencies (FDs) are a well-known and widely studied notion over
the years, at the foundation of the theory for relational database design (see [?]),
expressing constraints and relationships between two sets of attributes, that are
useful to design databases schemas, but can also be used in data cleaning or for
query optimization. In the setting of this paper, we propose to use FDs to model the
possible limitations of a predictive model, by considering that FDs can determine
whether amodel can actually exists over a relation, before actually trying to determine
the model using a classification algorithm. Indeed, a classification model seeks an
optimal function, with respect to a given error measure, that maps features to a class.
This process relies on a strong hypothesis, which is the existence of a function from
the features to the labels, and only seeks to determine such a function. However, in a
complementary way, FDs can be seen as a way to determine if such a function even
exists. A detailed study of the link between FDs and classification is available in [?].
We only underline here that when there exists a function from a feature vector X to
a label Y , it follows that the function dependency X → Y is satisfied.

Thus, for a classification problem, it seems logical to first verify the existence
of a function using FD f eatures → class. Moreover, understanding what tuples
prevent the FD from being satisfied can lead to improve the results, if the identified
blockages can be explained and fixed by the domain experts. This is where the notion
of counterexample is useful. Counterexamples identify pairs of tuples for which the
classifier will never be able to perform correctly, as for the same input, it will always
predict the same output. Understanding where these counterexamples come from,
and what can be done to avoid having such tuples in the dataset, is then an important
tool to improve the classification performances.

These notions were used in an application to CEMAFROID’s data, for which the
notion of counterexamples appeared to be central for the discussion with thermal
engineers. From this statement, we retrieve tuples that can impact the performances
of a classification algorithms on CEMAFROID’s data. In this paper, we expose
how we presented such counterexamples to the experts in thermal engineering, in
order to give them back the control over their own data, by explaining some of the
limitations of the classifier. The discussion that followed allowed to identify several
possible causes for the existence of counterexamples, that are exposed in this paper,
along with possible solutions to remove them. We also measured the proportion of
counterexamples in the dataset, by using metrics on the error of FDs in a relation.
The feedback obtained during this discussion highlighted several interesting research
problems related to classification, for which FDs could be useful, such as feature
engineering and data cleaning.

The contributions of this paper are as follows:

• The presentation of a classification problem for the ageing of refrigerated transport
vehicles, along with the corresponding dataset.



4 M. Le Guilly et al.

• The proposition of a classification model, giving very encouraging accuracy and
precision measures.

• The analysis of counterexamples from the dataset with domain experts, and the
conclusions to draw from it.

• Metrics to analyze the proportion of counterexamples in the dataset.

Paper organisation Section ?? presents the available data and the first numerical
model built on it. Section ?? presents the approach used, and the results of a discus-
sion with thermal engineers, based on the analysis of counterexamples to a FD in
their dataset, before concluding in section ??.

2 Predicting the ageing of Refrigerated Transport Vehicles Data

2.1 Classification problem

In refrigerated transport, the thermal insulation of the body is one of the basic
elements of the refrigerated equipment. The efficiency of this thermal insulation is
quantified by the body’s overall insulation coefficient (“K coefficient”), a parameter
increasing during the time due to the ageing of the body’s insulation. The evolution
of K with time can be very different from one vehicle to another due to many factors,
whose analysis and modeling has been previously treated by several studies [?],
highlighting various facets of this phenomenon.

The ageing of a refrigerated vehicle used in the carriage of perishable foodstuffs
is quantified through the evolution over the time of the K coefficient. The French
Regulation requires that this coefficient is measured for all the in-service vehicles
after twelve years of service. As a result, the ageing evaluation may be made by
comparing the K coefficient value of the in-service vehicle at the twelfth year of life,
K12 to the initial K value of the prototype equipment, Kp , through their ratio:

ageing =
K12
Kp

In practice, the ageing greatly varies from one vehicle to another, and several
parameters seem to influence it, from the type of products transported, to the archi-
tecture of the refrigerated units. The purpose of the study was therefore to use the
data available for refrigerated vehicles, in order to build a classifier able to predict
the ageing of a vehicle based on its characteristics.

In addition, the ageing is a continuous attribute, but once computed, it was
divided into two categories: high or low ageing. Indeed, the exact value itself is
not necessarily important for domain expert, and being able to predict a categorical
variable turns a regression problem into a regression one, while giving a very useful
indication to the domain experts.
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2.2 Refrigerated transport vehicle’s data

At 31December 2017, based on the Datafrig® data, the French fleet counted 110 000
refrigerated transport equipment with a valid ATP certification. These equipments
are divided into different categories, the main ones are: vans (vehicles with a total
weight allowed in charge smaller than 3.5 tons), trucks (vehicles whose total weight
allowed in charge varies from 3.5 to 29 tons) and semi-trailers (vehicles with total
weight allowed in charge higher than 29 tons). TheDatafrig® database is managed by
Cemafroid and contains all the ATP in-service equipment in France. The Datafrig®
data are first self-controlled by the body manufacturer, secondly automatically con-
trolled and analyzed by the Datafrig® software, then checked by a first technician
and finally validated by a supervisor. During the audit of the manufacturing of the
refrigerated vehicle an independent auditor verifies the quality of these data and
compares them to the real equipment. These five steps quality control system are
supposed to give to these data high level of quality.

From this database, sample of only 1158 highly curated data could be extracted
from the 109 122 refrigerated equipment registered in the Datafrig® database. These
1158 data represent different in-service vehicles of different firms, tested after twelve
years in the laboratory of Cemafroid. This is a surprisingly low number, showing
that there is only a small available proportion of available data, meaning it has to be
as qualitative as possible to hopefully build a useful predictive model.

For each of the vehicles more than 80 features are known. Ten of the most
important features, from a domain expert point of view, were analyzed including the
K12, the corresponding Kp , the type of vehicle, the body manufacturer, the nature of
the refrigerated enclosures and their isolation, the use of the vehicles and the different
types of transport to which they may be subjected. Most of the available features
are therefore categorical. Our selection criteria for the sample of 1158 vehicles
were based on data quality requirements applied on the ten selected attributes (or
variables): no null values, no outliers, and no duplicates. It is worth mentioning that
we rely on knowledge domain provided by experts to identify our ten features. A
statistical analysis of this dataset is available in [?].

2.3 Initial prediction results

Once the cleaned dataset obtained, a traditional classification workflow was applied:
the data was split in a training (80%) and a testing set (20%). The objective was to
sketch the construction of a first initial model, before any analysis of the dataset, using
classical state-of-the-art methods. It was decided to build a first classification model
using a decision tree [?], in order to obtain an interpretable model, that could easily
be discussed with thermal engineers. To improve the results, a boosted version of the
algorithm (see [?]) was used. The results were very encouraging, with a precision
of 0.818 and a recall of 0.783. The F1 score was of 0.800. In addition, a ROC curve
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Fig. 1 ROC curve for the prediction of refrigerated vehicles ageing

of this first classifier is presented on figure ??, also showing good performances for
the ageing prediction.

With this first model available, it was possible to engage in a discussion with the
experts in thermal engineering. The purpose was to understand what these result
meant, but also and especially what could be done to improve the results, and what
were the blocking points in the dataset itself. For example, some tuples might require
additional cleaning, or some records in the database might cause problem for the
learning process. As checking the data manually is very tiresome, even on a small
dataset, it appeared that the notion of functional dependency could be extremely
useful to assist the data expert in this specific task.

3 Domain experts and trust in the classification model

3.1 Preliminaries

We first recall basic notations and definitions that will be used throughout the paper.
It is assumed the reader is familiar with databases notations (see [?]).

Let U be a set of attributes. A relation schema R is a name associated with
attributes of U , i.e. R ⊆ U. A database schema R is a set of relation schemas.

Let D be a set of constants, A ∈ U and R a relation schema. The domain of A is
denoted by dom(A) ⊆ D. A tuple t over R is a function from R to D. A relation r
over R is a set of tuples over R. If X ⊆ U, and if t is a tuple over U , then we denote
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the restriction of t to X by t[X]. If r is a relation over U , then r[X] = {t[X], t ∈ R}.
The active domain of A in r , denoted by ADOM (A, r), is the set of values taken by
A in r . The active domain of r , denoted by ADOM (r), is the set of values in r .

We now define the syntax and the semantics of a FD.

Definition 1 Let R be a relation schema, X ⊆ R and C ⊆ R\X . A FD on R is an
expression of the form R : X → C (or simply X → C when R is clear from context)

Definition 2 Let r be a relation over R and X → C a FD on R. X → C is satisfied
in r , denoted by r |= X → C, if and only if for all t1, t2 ∈ r , if t1[X] = t2[X] then
t1[C] = t2[C].

Without loss of generality, the scope is limited to crisp FDs, i.e. using only the
strict equality. However, many other extensions have been proposed (see for example
[?]). In addition, this paper only uses canonical FDs, that only have a unique attribute
in their right hand side.

Strictly speaking, it is only possible for a relation to satisfy entirely a FD: oth-
erwise, the dependency is not satisfied, there is no middle ground. When dealing
with real life data, it is very likely that the FD will not be satisfied, even though a
classification model might then be built with satisfying performances. However, un-
derstanding what tuples prevent the FD from being satisfied can then lead to improve
the results, if the identified blockages can be explained and fixed by the domain
experts. Such tuples are called counterexamples, and are defined as follows:

Definition 3 Let r be a relation over R and X → Y a FD f on R. The set of
counterexamples of f over r is denoted by CE(X → Y ) and defined as follows:

CE(X → Y, r) = {(t1, t2) |t1, t2 ∈ r, t1[X] = t2[X] and t1[Y ] , t2[Y ]}

Counterexamples identify pairs of tuples for which the classifier will never be able
to perform correctly, as for the same input, it will always predict the same output.
These pairs are therefore very important, as their number directly impacts the quality
of the classification. As a result, in order to evaluate the impact of counterexamples
on classification, it is necessary to know their proportion in the dataset. Indeed, if a
classifier only contains a few counterexamples, the impact on the classification will
be marginal. On the opposite, a large counterexample set will significantly impact
the accuracy results.

Evaluating the impact of counterexamples can be a little subtle. Indeed, a single
tuple might cause many counterexamples, if it is in conflict with many other tuples
that agree between them. On the opposite, on other relations, the counterexamples
might be all due to many different tuples that each are in conflict with only a few
other tuples. This problem is actually equivalent to estimating the error of the FD in
a relation, a problem addressed in [?], in which three measures are presented, given
a FD X → C and a relation r .

The first one, G1, gives the proportion of counterexamples in the relation:

G1(X → C, r) =
|{(u, v) |u, v ∈ r, u[X] = v[X], u[C] , v[C]}|

|r |2
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Following this first measure, it is also possible to determine the proportion of
tuples involved in counterexamples. This measure G2 is given as follows:

G2(X → C, r) =
|{u|u ∈ r, ∃v ∈ r : u[X] = v[X], u[C] , v[C]}|

|r |

These two metrics are designed to evaluate the importance of counterexamples
in the relation. Similarly, measure G3 computes the size of the set of tuples in r to
obtain a maximal new relation s satisfying X → C. Contrary to [?] that present this
measure as an error, we propose it as follows:

G3(X → C, r) =
max({|s | |s ⊆ r, s |= X → C})

|r |

In [?], it is underlined that G3 is a direct upper bound for the accuracy of a
classifier trained on the considered data, when the FD between the features and the
class is considered, exactly as for the application to CEMAFROID’s data.

3.2 Presentation of counterexamples

id Manufac-
turer

Cell Type Insulation type Vehicle
type

Products Ageing
t1

Ageing
t2

1 Firm 1 Integrated Polyuréthane Truck Meat High Low
2 Firm 2 Integrated Polyuréthane with

cylopentane
Van Fruits High Low

3 Firm 3 Rapportee Polyuréthane with
cylopentane

Panel truck Frozen food High Low

4 Firm 4 Integrated Polyuréthane with
cylopentane

Trailer Vegetables High Low

5 Firm 5 Rapportee Polyuréthane with
cylopentane without
CFC

Truck Cheese High Low

6 Firm 6 Rapportee Polyuréthane with
cylopentane

Remorque Dairy prod-
ucts

High Low

Table 1 Subset of counterexamples from the classificationd dataset, on the ageing of refrigerated
transport vehicles.

Using the tools presented before, the classification dataset was analyzed to discuss
with the experts. A toy sample of counterexamples is presented in table ??. For sake
of clarity, only five attributes are represented in this example. Each line represents
a counterexample, which is two tuples. As they both share the same values over the
classification features, only the ageing column, on which they differ, is represented
for both(Ageing t1 and Ageing t2). This is also how the counterexamples were
presented to the thermal engineers, using an interface developped to present the



An attempt to better trust classification models 9

counterexample. It is named LeaFF (Learning Feasibility with FDs), and can be
used to query the data used for prediction, retrieve the counterexample, and obtain
the metrics for FD satisfaction. A snapshot of this interface is presented on figure ??,
applied to CEMAFROID’s data: it shows the part of the interface that can be used to
enter the features and the class, so that the FD can be checked and counterexamples
retrieved if necessary.

Based on such a table, they examined the counterexamples, to see if they could
explain their existence. We created a web interface to retrieve and present the coun-
terexamples. The part of this interface dedicated to the counterexamples is presented
on figure ??: a zone allows to specify the left and right part of the dependency. It is
then checked, and if not valid, counterexamples and metrics are presented below.

3.3 Measuring the counterexamples rate

The three aforementioned metrics were computed over the refrigerated vehicles
dataset. The proportion of counterexamples, G1 = 9.02%, is low, showing that the
pairs of tuples in the dataset are not a big proportion. However, as G2 = 100%, all
tuples from the dataset are involved in at least one counterexamples: this is likely
because a few tuples are in conflicts with almost all the other. This is confirmed by
measuring G3 = 86.73%: this shows that to obtain a counterexamples-free dataset,
the vast majority of the data can be saved.

When presented with the measures, the domain expert had many questions re-
garding what exactly each measure meant, and how to knowwhether the results were
good or not: is it good if the score is low ? Or should it be higher to be better ?
Indeed, these measures are not trivial, and the meaning they carry over the pairs of
tuples is not intuitive right the first time. This interaction therefore highlighted that
it will be interesting to find a convenient visualization for domain experts, to present
this result in a more instinctive manner.

3.4 Explaining counterexamples

After a thorough discussion, it appeared that several factors could explain the coun-
terexamples, each having a different solution. Ultimately, these factors were divided
into three main categories.

Dirty Data

A considerable amount of time had been spent on preparing and cleaning the dataset
in order to use it for classification. However, when looking at counterexamples, it
appeared that some tuples contained data that appeared to be incorrect. For coun-
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Fig. 2 Snapshot of the interface LeaFF used to explore FDs and counterexamples

terexample 1 in table ??, it appeared that the vehicle with a low ageing was actually
a van instead of a truck. Similarly, for counterexample 2, the vehicle with a high
ageing actually transported meat instead of vegetables. For this first category, once
the data experts were aware of their existence, it was easy for them to spot these
mistakes, based on the value of all the attributes. In addition, these counterexamples
are easy to fix by correcting the wrong values.

Missing information

For other counterexamples, it appeared that the attributes selected for classification
were not enough to explain their existence. However, other attributes, that had not
been kept for classification, allowed to discriminate between the two tuples involved
in the counterexample. For instance, in table ??, counterexample 3 can be removed
if the number of food cases in the vehicle is taken into account. For counterexample
4, a specific characteristic of the cooling unit differed between the two tuples. As a
result, taking those additional attributes, that at first had not been considered relevant
for the classification, allowed to remove counterexamples, that will then improve the
classifier’s performances. This is a way to do feature engineering in collaboration
with the domain experts.
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Human Factor

Finally, for a last group of counterexamples such as number 5 and number 6 from
table ??, it appeared that the only explanation was a human factor, such as how the
driver operates the vehicle. Indeed, this is susceptible of influencing the ageing of the
vehicle, but it is also hard to quantify. As a result, this last class of counterexamples
is very difficult to fix, as data cannot be cleaned or completed. However, being
aware that such counterexamples exist helps the data expert in understanding the
limitations of the classification model being produced. Finally, it also indicates other
values that could be interesting to record: in this case for example the average speed
of the vehicle. Similarly, during its life, the vehicle is subject to accidents of which
nothing is known. Information about the nature and severity of such accidents could
be useful for the study of ageing, and could also explain some counterexamples.

Presenting the counterexamples to domain experts therefore allowed to start a
very interesting discussion. Not only did it allow to better explain the limitations
of the classifier, but it also allowed to find concrete solution to improve the initial
dataset in order to improve the classification performances.

3.5 Take away lessons

Using the functional dependency to explore the classification dataset has proven to
be a very enriching experience, that created fruitful discussions and results. First, the
counterexamples allowed to identify limitations in the dataset, and to take concrete
actions to get higher quality data, and therefore improve the results for a future new
model. The counterexamples are a powerful notion to avoid the domain expert from
being overwhelmed by the data, as she then only have a small but meaningful subset
of tuples to study. The counterexamples are therefore a perfect starting point for a
discussion between data scientist and domain expert: while the first gain knowledge
on data they are not expert on, the others can point out important information
more easily. The counterexamples are a way for domain expert to read a concrete
information that can have an impact on her day-to-daywork. In this study, the analysis
of the counterexamples also allowed to identify three different concrete problems
that can appear in a classification dataset, as well as solutions to address some of
them. This study also shows that in classification, it is not possible to ignore the field
reality, and to only see the problem as a matrix of data: the physical model is as
important as the data itself.

Finally, functional dependencies could also identify situations in which it does
not make any sense to look for a classification model: it was not the case for this
specific problem, but in other situations, if the ratio of counterexamples is too high,
it is hopeless to seek for a good precision score when a significant amount of the
data does not seem to follow a mathematical function. The scores presented to the
expert are therefore also a way to give assurances on the model, to be aware of both
its limitations and strengths.
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4 Related Work

The analysis of counterexamples, and the eventual removal of some of them, for
example through contextualization, is a form of data cleaning, as it aims at removing
the data that is not fitted for the considered task. Data cleaning is a crucial part in
most of data science application, as data scientist actually spend around 80% of their
time on cleaning the data [?]. As a consequence, many research has be done on
addressing this problem [?], many of them relying on data dependencies and con-
straints. For instance, [?] proposes a semantic data profiler that can compute samples
that satisfy the same constraints than a given dataset. As the limited expressiveness
of functional dependencies did not always adapt well to the need of data cleaning on
real datasets, specific dependencies have been proposed to identify inconsistencies
in a dataset, and eventually repair it. Conditional dependencies [?] are functional
dependencies that hold only on a subset of the dataset. Matching dependencies [?]
for data repairing uses matching rules to relax the equality on functional dependen-
cies and assign values for data repairing. In Holoclean [?], dependencies are used to
clean automatically a dataset. In [?], a formal framework is proposed to bridge the
gap between database theory and learnability theory, and is applied to three applica-
tions: data cleaning, probabilistic query answering, and learning. It can even be used
to clean dataset in order to provide fairness [?]. [?] introduces denial constraints,
allowing to declaratively specify logical formulae to exclude counterexamples.

5 Conclusion

This paper presents the results obtained to better trust classification models in the
context of a study with CEMAFROID, a french company delivering conformity at-
testations for refrigerated transport vehicles. To this end, a classification dataset was
built and a first classifier was elaborated using standard classification methods. It
showed very promising results, but also raised interrogations from the thermal engi-
neers, related to trust issues in machine learning. In order to understand the dataset
and to demystify the classifier, we proposed to see the classification model from the
features to the class to be predicted as a functional dependency. The counterexam-
ples to this FD then give direct limitations of the classifier. The counterexamples
were analyzed, and various causes for their existence were discovered, as well as
potential solutions to remove them. More importantly, domain experts were able to
better understand the pros and cons of the numerical model, influencing their trust
in the whole machine learning process. This study was therefore really enriching,
allowing to bridge a gap by using FDs, a well-known notion in databases, into a
machine learning process. The methodology from this paper could be used in any
classification problem, to first study the existence of a model before trying to learn
from data.

This study also raises many open research questions, challenging but highly
relevant for any classification problem. First, if we only considered crisp functional
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dependencies in this paper, it could be interesting to refine the comparability between
tuples, in order to mange each attribute at a finer level, for example with similarity
measures. Then, if the feedback obtained during this study is highly compelling,
the next step would be to use it to clean the entire dataset, before building a new
classification model, hopefully reaching higher performances. This requires another
step to automate the cleaning process of the dataset, for example using the chase
algorithm [?].


